Aalto-yliopisto

EMBARGO 28.11.2022 klo 18.00 / Tutkijat loivat itsesäätyvän materiaalin mimosan ja kärpäsloukkukasvin innoittamina

Jaa

Tutkijat jäljittelivät uudessa materiaalissa eläville materiaaleille tyypillistä itsesäätyvää reagointijärjestelmää. Tutkimuksesta on hyötyä esimerkiksi tulevaisuuden robottien kehittämisessä.

Laservalon, geelien ja peilin muodostava järjestelmä luo yhdessä palautejärjestelmän, joka pitää ensimmäisen geelin tietyssä lämpötilassa riippumatta ulkoisista häiriötekijöistä. Kuva: Olli Ikkalan (Aalto-yliopisto) ja Arri Priimäen (Tampereen yliopisto) tutkimusryhmät.
Laservalon, geelien ja peilin muodostava järjestelmä luo yhdessä palautejärjestelmän, joka pitää ensimmäisen geelin tietyssä lämpötilassa riippumatta ulkoisista häiriötekijöistä. Kuva: Olli Ikkalan (Aalto-yliopisto) ja Arri Priimäen (Tampereen yliopisto) tutkimusryhmät.

Biologiset organismit pitävät yllä dynaamista itsesäätyvää tasapainotilaa eli homeostaasia ja reagoivat herkästi ympäristönsä muutoksiin selviytyäkseen. Organismi voi esimerkiksi reagoida kosketukseen tai valoon.

Keinotekoiset materiaalit eivät tyypillisesti ole samalla lailla itsesäätyviä ja herkästi reagoivia.

Nyt Aalto-yliopiston ja Tampereen yliopiston tutkijat ovat onnistuneet kehittämään homeostaattisen järjestelmän, joka reagoi ympäristön muutoksiin dynaamisesti samaan tapaan kuin elävät organismit. Saavutus voi mahdollistaa uudenlaisia älykkäitä materiaaleja ja interaktiivista pehmeää robotiikkaa. Pehmeä robotiikka jäljittelee mahdollisimman paljon eläviä organismeja ja pyrkii toimimaan samalla tavoin joustavasti tehtävien suorittamisessa.

Tulokset julkaistaan tänään klo 18 Nature Nanotechnology -lehdessä (linkki toimii vasta embargon poistumisen jälkeen).

Tutkijat lähtivät liikkeelle luonnon yksinkertaisemmista ilmiöistä, kertoo Aalto-yliopiston professori Olli Ikkala.

”Mekaaninen kosketus saa biologisissa kudoksissa aikaan muutoksia, jotka käynnistävät erilaisia mekanismeja. Käytimme esimerkkeinä luonnon yksinkertaisia ilmiöitä, kuten mimosan lehtien meneminen suppuun kosketuksen johdosta tai kärpäsloukkukasvin äkillinen kiinni napsahtaminen hyönteisen kävellessä lehdellä. Kosketus vaikuttaa kasvin sensoreihin, jotka taas käynnistävät sähköiset ilmiöt kasvin sisällä.”

Homeostaattinen järjestelmä koostuu laservalosta, geeleistä ja peilistä

Tutkijoiden luoma materiaaliyhdistelmä koostuu kahdesta rinnakkaisesta geelistä, joilla on toisistaan poikkeavat ominaisuudet, kertoo akatemiatutkija Hang Zhang Aalto-yliopistosta.

”Biologiset kudokset ovat tyypillisesti pehmeää, joustavaa ja muovautuvaa, kuten myös tässä tutkimuksessa käytetyt geelit. Geeleissä on polymeereja eli muoveja, jotka on turvotettu vedessä. Niiden avulla voi saada aikaan mielenkiintoisia reagointeja ympäristön ärsykkeisiin”, Zhang selittää.

Homeostaattinen järjestelmä koostuu kahden geelin lisäksi peilistä ja laservalosta. Kokeessa tutkijat suuntasivat laservalon ensin ensimmäisen geelin läpi, minkä jälkeen se heijastui peilistä toiseen, lämmittäen samalla toisessa geelissä olevia kultananohiukkasia. Nämä hiukkaset alkoivat johtaa lämpöä ensimmäiseen geeliin. Kun ensimmäinen geeli oli riittävän lämmin, se muuttui ei-läpinäkyväksi. Näin valo ei päässytkään enää sen läpi peiliin, vaan heijastui takaisin. Tällöin kultananohiukkaset – ja samalla koko järjestelmä – alkoi jäähtyä. Ensimmäinen geeli tuli uudelleen läpinäkyväksi, jolloin laservalo pystyi taas läpäisemään sen ja lämmitysprosessi alkoi alusta.

Laservalon, geelien ja peilin muodostava järjestelmä luo siis yhdessä palautejärjestelmän, joka pitää ensimmäisen geelin tietyssä lämpötilassa riippumatta ulkoisista häiriötekijöistä. Lämpötila oli kokeessa lähellä 36 astetta eli ihmiskehon lämpötilaa, vaikka lasertehoja ja jäähdytystapoja kokeessa muutettiinkin.

Homeostaattinen järjestelmä on siis samalla tapaa dynaaminen ja itsesäätyvä kuin biologiset järjestelmät, kiteyttää Tampereen yliopiston akatemiatutkija Hao Zeng.

”Lämpötila oskilloi eli heiluu raja-arvon ympärillä, mutta heiluminen on melko pientä, eikä se reagoi juurikaan ympäristön häiriötekijöihin. Siksi voimme kutsua systeemiä homeostaattiseksi.”

Mekaanista ärsytystä ja jännityksen laukeamista

Tutkijat loivat kokeen jälkeen vielä kolme erilaista tutkimusasetelmaa. Ensimmäisessä he osoittivat, että mekaanisella kosketuksella voidaan saada aikaan reagointi, joka muistuttaa mimosan lehtien suppuun menemistä. Tutkijat tekivät kokeessa keinotekoisen ”lehden” nestekidemateriaalista. He onnistuivat säätämään järjestelmää niin, että mekaaninen kosketusenergia muuttui lämpöenergiaksi, ja lämpötilan noustessa ”lehti” taipui. Siihen kului aikaa muutama sekunti, jonka jälkeen järjestelmä toipui ennalleen, jolloin sama voitiin toistaa uudelleen. Tämä ominaisuus on tärkeää esimerkiksi pehmeän robotiikan tartuntaelimissä.

Toisessa kokeessa tutkijat osoittivat, että kun geelisysteemiä kosketetaan sopivalla taajuudella, voidaan äkillisesti vapauttaa energiaa, kuten kärpäsloukkukasvissa. Tutkijat liimasivat geeliin esijännitetyn polymeerikappaleen liimalla, joka sulaa tietyssä lämpötilassa. Kun lämpötila nousi riittävästi, liima suli ja jännitys laukesi hyvin nopeasti vapauttaen polymeerikappaleen.

Kolmanneksi tutkijat onnistuivat kuljettamaan valolla mikroskooppisen pientä lastia. Tutkijat laittoivat ”nestekidelehtiä” peräkkäin geelin päälle, ja valon aikaansaaman lämpötilan värähtelyn avulla voitiin kuljettaa lastia.

”Tulevaisuuden robotit tulevat perustumaan siihen, että materiaalit korjaavat itse itsensä takaisin tasapainotilaan sen jälkeen, kun ulkoinen ärsyke on pakottanut ne pois siitä. Valo on varteenotettava ulkoinen ärsyke, koska lasersäteellä voidaan kohdistaa valoa pitkänkin matkan päähän”, sanoo professori Arri Priimägi Tampereen yliopistosta.

Avainsanat

Yhteyshenkilöt

Olli Ikkala
Professori
Aalto-yliopisto
olli.ikkala@aalto.fi
p. 050 4100 454

Arri Priimägi
Professori
Tampereen yliopisto
arri.priimagi@tuni.fi
p. 044 5150 300

Kuvat

Laservalon, geelien ja peilin muodostava järjestelmä luo yhdessä palautejärjestelmän, joka pitää ensimmäisen geelin tietyssä lämpötilassa riippumatta ulkoisista häiriötekijöistä. Kuva: Olli Ikkalan (Aalto-yliopisto) ja Arri Priimäen (Tampereen yliopisto) tutkimusryhmät.
Laservalon, geelien ja peilin muodostava järjestelmä luo yhdessä palautejärjestelmän, joka pitää ensimmäisen geelin tietyssä lämpötilassa riippumatta ulkoisista häiriötekijöistä. Kuva: Olli Ikkalan (Aalto-yliopisto) ja Arri Priimäen (Tampereen yliopisto) tutkimusryhmät.
Lataa

Linkit

Tietoja julkaisijasta

Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu 12 000 opiskelijaa ja yli 4000 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.  

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Aalto-yliopisto

Kvanttitutkijat löysivät uuden tavan nähdä katsomatta – tarkempi kuin fysiikan Nobel-palkitun kehittämä havainnointitapa21.12.2022 10:00:00 EET | Tiedote

Aalto-yliopiston tutkijat ovat kehittäneet uuden tavan havaita ja mitata kohteita niin, etteivät he ole missään vuorovaikutuksessa kohteiden kanssa. Aiempaa huomattavasti tehokkaampi koeprotokolla auttaa ymmärtämään kvanttimaailman ja klassisen fysiikan rajapintaa. Lisäksi se mahdollistaa entistä tarkemman mittaamisen esimerkiksi kvanttitietokoneissa.

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme