Aalto-yliopisto

Kvanttitutkijat löysivät uuden tavan nähdä katsomatta – tarkempi kuin fysiikan Nobel-palkitun kehittämä havainnointitapa

Jaa
Aalto-yliopiston tutkijat ovat kehittäneet uuden tavan havaita ja mitata kohteita niin, etteivät he ole missään vuorovaikutuksessa kohteiden kanssa. Aiempaa huomattavasti tehokkaampi koeprotokolla auttaa ymmärtämään kvanttimaailman ja klassisen fysiikan rajapintaa. Lisäksi se mahdollistaa entistä tarkemman mittaamisen esimerkiksi kvanttitietokoneissa.
Menetelmän havaitsemistarkkuus oli huomattavasti parempi kuin optiikkaan perustuvassa menetelmässä eikä se muuttunut mihinkään, vaikka kokeita tehtiin lisää ja tutkijat kävivät menetelmänsä monta kertaa läpi virheiden varalta. Kuva: Mikko Raskinen / Aalto-yliopisto
Menetelmän havaitsemistarkkuus oli huomattavasti parempi kuin optiikkaan perustuvassa menetelmässä eikä se muuttunut mihinkään, vaikka kokeita tehtiin lisää ja tutkijat kävivät menetelmänsä monta kertaa läpi virheiden varalta. Kuva: Mikko Raskinen / Aalto-yliopisto

Ihminen näkee ympäristönsä, kun esineistä kimpoava valo imeytyy silmän verkkokalvon soluihin. Mutta onnistuuko näkeminen, vaikka valo ei ikinä kohtaisi verkkokalvoa? Kvanttimaailmassa se on mahdollista.

Valo on olemassa sekä fotoneina eli valohiukkasina että valoaaltoina. Tätä kaksoisluonnetta hyödyntämällä on mahdollista suunnitella tieteellinen koe, jossa kohteen havaitsemiseen riittää sen pelkkä läsnäolo. Mitään vuorovaikutusta, kuten näkemistä, ei mittaajan ja kohteen välillä tarvita.

Ensimmäisenä vuorovaikutuksetonta havaitsemista tutki optiikan työvälineillä Anton Zeilinger, joka oli myös yksi vuoden 2022 fysiikan Nobel-voittajista, ,

Nyt Aalto-yliopiston tutkijat Shruti Dogra, John J. McCord ja Gheorghe Sorin Paraoanu ovat löytäneet uuden ja paljon tarkemman tavan toteuttaa mittauskokeita ilman vuorovaikutusta kohteen kanssa. Havainnoitavina olivat klassisen fysiikan lakien alaiset mikroaaltopulssit, joita havainnoitiin optisten laitteiden sijaan transmoneilla. Ne ovat keinotekoisia makroskooppisia suprajohtimia, Kvanttifysiikan ja klassisen fysiikan maailmojen rajapinnassa tapahtuneen tutkimuksen tulokset julkaistiin hiljattain Nature Communications -lehdessä.

Ylimääräinen kerros kvanttia

Zeilingerin kokeet kiehtoivat tutkijoita, mutta optiikan sijaan he sovelsivat omia kvanttityökalujaan.

“Meidän piti soveltaa aiempaa konseptia meille tuttuihin työkaluihin eli suprajohtimiin. Siksi jouduimme myös muuttamaan koeprotokollaa radikaalisti: lisäsimme siihen ylimääräisen kerroksen ”kvanttia” käyttämällä transmoneja niiden korkeimmalla energiatasolla. Onnistumisen avain oli transmonin kvanttikoherenssin hyödyntäminen mittaamisessa”, Paraoanu sanoo.

Kvanttikoherenssi viittaa kvanttimaailman ilmiöön, jossa kohde voi olla samanaikaisesti kahdessa eri tilassa. Ilmiö on kuitenkin äärimmäisen herkkä ja tuhoutuu pienimmästäkin vuorovaikutuksesta.

Aallon tutkijat osoittivat, että pelkkä mikroaaltojen olemassaolo muutti transmonien energiatasoa. Mikroaallot siis havaittiin tarkastelemalla transmonien kvanttikoherenssiin perustuvaa muutosta ilman vuorovaikutusta.

Tulokset osoittivat, että menetelmän havaitsemistarkkuus oli huomattavasti parempi kuin optiikkaan perustuvassa menetelmässä eikä se muuttunut mihinkään, vaikka kokeita tehtiin lisää ja tutkijat kävivät menetelmänsä monta kertaa läpi virheiden varalta.

“Osoitimme myös, että menetelmällämme voi havaita myös erittäin heikkoja mikroaaltopulsseja,” Dogra sanoo.

Kokeessa löytyi myös uusi tapa saavuttaa niin sanottu kvanttietu eli tilanne, jossa kvanttifysiikkaan perustuva laite pystyy ratkaisemaan ongelman paremmin kuin klassisen fysiikan laite. Usein ajatellaan, että kvanttietu on erittäin työlästä saavuttaa. Esimerkiksi kvanttitietokoneiden puolella tutkijat uskovat kvanttiedun todistamisen vaativan valtavat määrät kubitteja eli kvanttitietokoneiden rakennuspalikoita. Dogran, McCordin ja Paraoanun kehittämä menetelmä kuitenkin demonstroi kvanttiedun olemassaolon jo varsin yksinkertaisessa tilanteessa.

Sovelluksia kvanttiteknologian eri prosesseissa

Vuorovaikutuksesta vapaita mittauksia tehdään jo monilla kvanttiteknologian eri osa-aluilla. Ne kuitenkin perustuvat aiempaan, optiikkaa hyödyntävään menetelmään. Nyt löytynyt uusi menetelmä voisi tehostaa näitä prosesseja huomattavasti.

“Kvanttitietokoneissa menetelmäämme voisi käyttää esimerkiksi fotonien tilojen havaitsemiseen koneiden muistissa. Se olisi erittäin tehokas tapa saada tietoa kvanttiprosessorista häiritsemättä sen toimintaa”, sanoo Paraoanu.

Paraoanun johtama tutkimusryhmä aikoo tutkia menetelmällään muun muassa kontrafaktuaalista kommunikaatiota eli viestien lähettämistä kahden osapuolen välillä ilman fyysisten hiukkasten siirtoa, ja kontrafaktuaalista kvanttilaskentaa, jossa laskutoimituksen tulos saadaan käynnistämättä tietokonetta.

Tutkimus ilman vuorovaikutusta tehtävästä mittaamisesta on saatavilla täällä.

Avainsanat

Yhteyshenkilöt

Lisätietoja (englanniksi)


Sorin Paraoanu
Vanhempi yliopistonlehtori
Teknillisen fysiikan laitos
Aalto-yliopisto
puh. 050 344 2650
sorin.paraoanu@aalto.fi

Kuvat

Menetelmän havaitsemistarkkuus oli huomattavasti parempi kuin optiikkaan perustuvassa menetelmässä eikä se muuttunut mihinkään, vaikka kokeita tehtiin lisää ja tutkijat kävivät menetelmänsä monta kertaa läpi virheiden varalta. Kuva: Mikko Raskinen / Aalto-yliopisto
Menetelmän havaitsemistarkkuus oli huomattavasti parempi kuin optiikkaan perustuvassa menetelmässä eikä se muuttunut mihinkään, vaikka kokeita tehtiin lisää ja tutkijat kävivät menetelmänsä monta kertaa läpi virheiden varalta. Kuva: Mikko Raskinen / Aalto-yliopisto
Lataa

Linkit

Tietoja julkaisijasta

Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.

aalto.fi

facebook.com/aaltouniversity

twitter.com/aaltouniversity

youtube.com/aaltouniversity

 

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Aalto-yliopisto

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme
HiddenA line styled icon from Orion Icon Library.Eye