Aalto-yliopisto

Timantinkaltainen hiili syntyykin eri lailla kuin on uskottu – koneoppiminen mahdollisti uuden mallin kehittämisen

Jaa
Räätälöityjä hiilipintoja voidaan hyödyntää muun muassa lääketieteessä ja vedenpuhdistuksessa.
Saapuvien ja osuman saaneiden atomien liikeradat tetraedrisen amorfisen hiilen pinnoituksen aikana. Kuva: Aalto-yliopisto
Saapuvien ja osuman saaneiden atomien liikeradat tetraedrisen amorfisen hiilen pinnoituksen aikana. Kuva: Aalto-yliopisto

Aalto-yliopiston ja Cambridgen yliopiston tutkijat ovat tehneet merkittävän läpimurron laskennallisissa tieteissä yhdistämällä atomitason mallinnusta ja koneoppimista. Menetelmällä on ensimmäistä kertaa voitu mallintaa realistisesti se, miten amorfiset hiilifilmit muodostuvat atomitasolla. Amorfisella materiaalilla tarkoitetaan materiaalia, jolla ei ole säännöllistä kiderakennetta. Menetelmää voidaan hyödyntää myös useiden muiden materiaalien tutkimisessa.

”Onnistumisen salaisuus on koneoppiminen, jonka avulla voimme mallintaa tuhansien atomien käyttäytymisen pitkällä ajanjaksolla. Näin mallista on saatu todenmukaisempi kuin aikaisemmin”, kertoo tutkijatohtori Miguel Caro.

Simuloinnit paljastivat, että timantinkaltainen hiilifilmi syntyy atomitasolla eri tavalla kuin on oletettu. Viimeiset 30 vuotta vallalla ollut käsitys filmin syntymekanismista on perustunut oletuksille ja epäsuorille kokeellisille tuloksille, eikä hyvää tai edes välttävää atomitason mallia ole ennen ollut käytettävissä. Nyt uusi menetelmä kumosi aiemmat kvalitatiiviset mallit ja antoi tarkan atomitason kuvan syntymekanismista.

”Aiemmin amorfisten hiilifilmien kuviteltiin syntyvän atomien pakkautuessa pienelle alueelle, mutta me todistimme, että mekaanisen shokkiaallon vaikutuksesta timantinkaltaiset atomit syntyvät itseasiassa kauempana siitä kohdasta, mihin atomeja ammutaan”, sanoo Caro, joka toteutti simuloinnit CSC:n (Tieteen tietotekniikan keskus) supertietokoneilla.

Tulos mahdollistaa merkittäviä uusia tutkimuspolkuja

Amorfisen hiilen käyttökohteita on lukematon määrä. Sitä käytetään pinnoitteina useissa mekaanisissa sovelluksissa, esimerkiksi auton moottoreissa. Lisäksi materiaalia voidaan hyödyntää muun muassa lääketieteessä ja erilaisissa energia-, bio- ja ympäristösovelluksissa.

”Meille tärkein sovellus ovat bioanturit. Olemme käyttäneet hyvin ohuita amorfisia hiilipinnoitteita erilaisten biomolekyylien tunnistukseen. Näissä sovelluksissa on erittäin tärkeää tuntea filmien sähköiset, kemialliset ja sähkökemialliset ominaisuudet ja pystyä räätälöimään materiaali tiettyyn sovellukseen sopivaksi”, kertoo professori Tomi Laurila.

Uusi koneoppimiseen pohjautuvat menetelmä auttaa monen eri kokeellisen materiaalitutkimuksen tekijöitä, sillä se kykenee antamaan tietoa materiaaleista lähes kvanttimekaanisten menetelmien tarkkuudella mutta mahdollistaa samalla tuhansien atomien ja pitkien aikaskaalojen käytön.

”Olen erittäin innoissani siitä, millaisia mahdollisuuksia tämä menetelmä tarjoaa jatkotutkimusten kannalta. Tämä atomitason malli tuottaa todistetusti oikeita ja kokeita erinomaisesti vastaavia tuloksia paljastaen kuitenkin ensikertaa tulosten takana olevat atomitason ilmiöt. Mallin avulla voimme esimerkiksi ennustaa, millainen hiilipinta olisi paras vaikkapa hermovälittäjäaine dopamiinin tai serotoniinin mittaamiseen”, sanoo Laurila.

”Yhteistyömme on ollut erittäin menestyksekästä ja jatkamme tutkimuksen tekemistä yhdessä jatkossakin”, sanoo Volker Deringer Cambridgen yliopistosta ja toteaa olevansa hyvin innostunut soveltamaan näitä menetelmiä amorfisten materiaalien tutkimiseen.

Tutkimus on julkaistu Physical Review Letter -lehdessä:

Miguel A. Caro, Volker L. Deringer, Jari Koskinen, Tomi Laurila, and Gábor Csányi
Growth Mechanism and Origin of High sp3 Content in Tetrahedral Amorphous Carbon
Phys. Rev. Lett. 120, 166101 (2018)

Linkki artikkeliin (journals.aps.org)

Avainsanat

Yhteyshenkilöt

Miguel Caro, tutkijatohtori, Aalto-yliopisto
p. 050 407 9988
miguel.caro@aalto.fi


Tomi Laurila, professori, Aalto-yliopisto
p. 050 341 4375
tomi.laurila@aalto.fi


Dr Volker Deringer, Leverhulme Early Career Fellow, University of Cambridge
+44 7494 989967
vld24@cam.ac.uk

Kuvat

Saapuvien ja osuman saaneiden atomien liikeradat tetraedrisen amorfisen hiilen pinnoituksen aikana. Kuva: Aalto-yliopisto
Saapuvien ja osuman saaneiden atomien liikeradat tetraedrisen amorfisen hiilen pinnoituksen aikana. Kuva: Aalto-yliopisto
Lataa

Linkit

Tietoja julkaisijasta

Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.

aalto.fi

facebook.com/aaltouniversity

twitter.com/aaltouniversity

youtube.com/aaltouniversity

 

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Aalto-yliopisto

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme
HiddenA line styled icon from Orion Icon Library.Eye