Tutkijat mallinsivat uudenlaisen maailmankaikkeuden kvanttitietokoneella
Kvanttimekaniikan perusoletusten vastaisesti kvantti-informaatio ei säilynyt kubiteilla suoritetuissa operaatioissa. Tutkijat saattoivat myös muuttaa kubittien kvanttilomittuneisuuden astetta muokkaamalla vain yhtä kubittia.

Atomitason kohteiden käyttäytyminen perustuu kvanttifysiikassa matemaattisiin yhtälöihin, joita kutsutaan hermiittisiksi Hamiltonin operaattoreiksi. Ne ovat olleet lähes sadan vuoden ajan kvanttifysiikan kivijalka. Viime aikoina teoreetikot ovat kuitenkin ymmärtäneet, että tätä perustaa on mahdollista laajentaa hyödyntämällä operaattoreita, jotka eivät ole hermiittisiä.
Nämä kvanttifysiikan uudet yhtälöt kuvaavat maailmankaikkeutta, jolla on aivan omat erityiset sääntönsä. Esimerkiksi tietyillä muuttujilla on ominaisuus, jota kutsutaan pariteetti-aika (PT) -symmetriseksi järjestelmäksi. Ominaisuuteen sisältyvä ajan käännön symmetria tarkoittaa, että jos valo voi kulkea yhteen suuntaan, sen on voitava kulkea myös vastakkaiseen suuntaan. Näin esimerkiksi peiliin katsoja voisi ajan suunnan kääntämällä nähdä peilikuvan sijaan itsestään todellisen maailman version.
Uudessa tutkimuksessaan Aalto-yliopiston dosentti Sorin Paraoanun johtama tutkijatiimi mallinsi kvanttitietokoneen avulla uudenlaisen maailmankaikkeuden, joka käyttäytyy näiden uusien mallien mukaan. Tutkijatiimiin kuuluivat tutkijatohtori Shruti Dogra Aalto-yliopistosta sekä Artem Melnikov Moskovan MIPT-instituutista ja Terra Quantum -yrityksestä.
Tutkijat käyttivät tutkimuksessaan kubitteja eli kvanttitietokoneen bittejä ja saivat kokeellisesti aikaan tuloksia, joita kvanttimekaniikassa ei aiemmin ole pidetty mahdollisina. Tutkimus laajentaa ymmärrystä kvanttimekaniikan rajoista.
Ensimmäinen tulos oli, että perinteisen kvanttiteorian vastaisesti kvantti-informaatio ei säilynyt tietyissä kubiteilla suoritetuissa operaatioissa. Tämä voi auttaa selittämään vielä ratkaisemattomia ongelmia, kuten Stephen Hawkingin mustien aukkojen informaatioparadoksia eli sitä, mitä tapahtuu informaatiolle, kun kappale putoaa mustaan aukkoon.
Tutkijat tarkastelivat myös kahta toisiinsa lomittunutta kubittia. Kvanttilomittumisen ansiosta toisistaan etäällä olevat kubitit ovat vuorovaikutuksessa keskenään. Einstein kutsui tätä hiukkasten väliseksi haamuvuorovaikutukseksi. Perinteisessä kvanttifysiikassa kahden hiukkasen välisen lomittumisen astetta ei voi muuttaa kajoamatta molempiin hiukkasiin. Uusien mallien valossa tutkijat saattoivat sen sijaan muuttaa kubittien lomittuneisuuden astetta muokkaamalla vain yhtä kubiteista, mitä ei kvanttifysiikassa ole aikaisemmin pystytty osoittamaan.
”Kvanttitietokoneet ovat nyt kehittyneet riittävän pitkälle, että niillä voidaan kokeellisesti testata matemaattisia ja epätavanomaisia teorioita. Tämän tutkimuksen valossa Einsteinin ennustama hiukkasten välinen haamuvuorovaikutus saa entistä vaikeammin ymmärrettäviä ulottuvuuksia”, sanoo Sorin Paraoanu.
Useat viime aikoina kehitetyt optiset tai mikroaaltoihin perustuvat kvanttilaitteet toimivat uusien mallien mukaan. Nyt julkaistu tutkimus voi tarkoittaa, että näitä laitteita voitaisiin simuloida kvanttitietokoneella.
Aallon tutkimusryhmä on osa kansallista huippuyksikköä Quantum Technology Finland QTF. Tutkimuksessa on hyödynnetty kansallista OtaNano-tutkimusinfrastruktuuria.
Avainsanat
Yhteyshenkilöt
Sorin Paraoanu (englanniksi)
Vanhempi yliopistonlehtori
Aalto-yliopisto
sorin.paraoanu@aalto.fi
puh. 050 344 2650
Kuvat

Linkit
Tietoja julkaisijasta
Aalto-yliopisto. Kohti parempaa maailmaa. Aalto-yliopisto on rohkeiden ajattelijoiden yhteisö, jossa tiede ja taide kohtaavat tekniikan ja talouden. Tunnistamme ja ratkaisemme yhteiskunnan suuria haasteita ja rakennamme innovatiivista tulevaisuutta. Yliopistossa on kuusi korkeakoulua, 12 000 opiskelijaa ja 400 professoria. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat mediatiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Talvimyrsky tulossa? Tekoäly ennustaa jo päiviä ennen, aiheuttaako se sähkökatkoja24.2.2021 09:05:18 EET | Tiedote
Aalto-yliopiston ja Ilmatieteen laitoksen menetelmä parantaa sähköyhtiöiden kykyä ennakoida myrskyjen vaikutuksia.
Tutkijat suunnittelivat Korkeasaaren valkopääsakeille videoita näyttävän laitteen – vedenalainen maailma ja matojen luikertelu kiehtoivat enemmän kuin seeprojen touhut23.2.2021 13:01:35 EET | Tiedote
Pikkuapinoiden aktivoimiseksi kehitetty laite näytti niille erilaisia videoita. Apinat saivat itse päättää laitteen käytöstä, mikä lisää niiden hyvinvointia.
Aalto-yliopiston kampus esittäytyy virtuaalisena kierroksena16.2.2021 13:22:55 EET | Tiedote
Uudessa verkkopalvelussa kaksi opasta johdattaa vierailijan tutustumaan 44 eri paikkaan yliopiston Otaniemen kampuksella.
Tekoäly voi löytää kohonneen dementiariskin jo viikossa – nopea diagnoosi mullistaisi sairauden ennaltaehkäisyn12.2.2021 10:38:13 EET | Tiedote
Tutkijat kehittävät uudessa AI-Mind-hankkeessa digitaalisia työkaluja aivojen hermoverkkoyhteyksien tunnistamiseen ja dementiariskin arviointiin.
Pilotförsök med återvinning av näringsämnen ur avloppsvatten i Helsingborgs stadsdel för cirkulär ekonomi9.2.2021 08:30:00 EET | Tiedote
I den unika stadsdelen Oceanhamnen återvinns näringsämnen, energi och vatten ur avlopp. Aalto-universitetets vattenforskare utvecklade processen NPHarvest som är den första metoden att testas.
Jätevedestä lannoitteet nappaavaa tekniikkaa pilotoidaan Helsingborgin kiertotalouskaupunginosassa9.2.2021 08:30:00 EET | Tiedote
Ainutlaatuisella kaupunkialueella kierrätetään jätevesien ravinteita, energiaa ja vettä. Aalto-yliopiston vesitutkijoiden kehittämä NPHarvest on ensimmäinen testiin pääsevä menetelmä.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme