Aalto-yliopisto

Uusi, tehokas katalyytti vauhdittaa puhtaan vetypolttoaineen valmistusta

Jaa
Tutkijat ovat kehittäneet lupaavan materiaaliyhdistelmän grafeenista, hiilinanoputkista ja epäpuhtausatomeista.
Kaaviokuva grafeenin ja hiilinanoputken muodostamasta hybridinanomateriaalista, kun materiaalin yksittäisiä atomeja on korvattu epäpuhtausatomeilla. Materiaali katalysoi tehokkaasti tärkeitä sähkökemiallisia reaktioita veden elektrolyysilaitteissa sekä polttokennoissa. Kuva: Aalto-yliopisto
Kaaviokuva grafeenin ja hiilinanoputken muodostamasta hybridinanomateriaalista, kun materiaalin yksittäisiä atomeja on korvattu epäpuhtausatomeilla. Materiaali katalysoi tehokkaasti tärkeitä sähkökemiallisia reaktioita veden elektrolyysilaitteissa sekä polttokennoissa. Kuva: Aalto-yliopisto

Vedyllä toimivat polttokennot ovat lupaava, puhdas vaihtoehto fossiilisille polttoaineille etenkin ajoneuvoissa. Niiden yleistyminen edellyttää paitsi edullisia ja tehokkaita polttokennoja, myös sähkökatalyyttejä, jotka tuottavat vetyä vähäpäästöisesti, sähkökemiallisessa reaktiossa.

Prosessi on sitä tehokkaampi, mitä vähemmän energiaa menetetään, kun vesi hajotetaan hapeksi ja vedyksi. Katalyytillä on prosessissa merkittävä rooli, ja siksi tehokkaiden ja edullisten katalyyttien kehittäminen on tärkeää.

Aalto-yliopiston fysiikan ja kemian tutkijat ovat yhteistyössä ranskalaisten ja itävaltalaisten tutkijoiden kanssa kehittäneet uuden katalyyttimateriaalin, joka nopeuttaa sähkökemiallisia reaktioita enemmän kuin mikään nykyisin kaupallisesti saatavilla oleva katalyyttimateriaali.

”Haluamme korvata perinteiset arvometalleihin, kuten platinaan ja iridiumiin, perustuvat kalliit ja harvinaiset katalyytit erittäin aktiivisilla, edullisilla ja hyvin saatavilla olevilla vaihtoehdoilla. Näitä ovat esimerkiksi grafeeni ja hiilinanoputket sekä typpi ja jotkin siirtymämetallit kuten kupari ja rauta”, sanoo Aalto-yliopiston tutkijatohtori Mohammad Tavakkoli.

Siirtymämetallit ovat hyvin reaktiivisia ja muodostavat helposti erilaisia yhdisteitä.

Sormenpään koko, tenniskentän pinta-ala

Tutkijat loivat erittäin huokoisen materiaaliyhdistelmän grafeenista ja hiilinanoputkista ja korvasivat osan materiaaliyhdistelmän hiiliatomeista muiden hyviksi katalyyteiksi tiedettyjen alkuaineiden yksittäisillä atomeilla. Nämä epäpuhtausatomit tekivät huokoisesta materiaaliyhdistelmästä entistäkin tehokkaamman.

Tavallisesti katalyytit asetetaan loppusovelluksessa – tässä tapauksessa sähkökemiallisessa kennossa – katalyytin pohjana toimivan substraatin eli kasvatusalustan pinnalle. Tutkijat kasvattivat katalyysimateriaalia itse kehittämällään, kemialliseen synteesiin perustuvalla menetelmällä. Siinä esikäsitelty substraatti, hiiltä sisältävää kaasua sekä epäpuhtausatomien lähteitä laitetaan kasvatusuuniin. Katalyyttinä toimivat nanomateriaalit muodostuvat kasvatusuunissa riittävän korkeassa lämpötilassa, tyypillisesti noin 1000 celsiusasteessa.

Yksi uuden katalyysimateriaalin tehokkuuden salaisuuksista on sen huokoisuus.

”Sen ansiosta katalyytin, kasvatusalustan sekä katalysoitavan aineen eli tässä tapauksessa veden välinen aktiivinen pinta-ala on todella suuri. Esimerkiksi sormenpään kokoinen kalvo nanohiiliputkea saattaa pinta-alaltaan vastata muutamaa tenniskenttää. Pinta-ala suhteessa tilavuuteen on äärimmäisen suuri, ja tämä on keskeinen tekijä katalyytin aktiivisuudelle”, kertoo vanhempi tutkija Kimmo Mustonen Wienin yliopistosta.

Tutkimustulokset voivat parhaimmillaan ohjata vetyä energianaan käyttävien laitteiden järkevää suunnittelua.

”Vetyteknologia on erityisen hyödyllinen paljon energiaa tarvitsevissa ja liikkuvissa laitteissa. Käyttökohteita löytyy esimerkiksi avaruusteknologiassa, satelliittipuhelimissa tai tavarakuljetuksiin tarkoitetuissa droneissa. Vetypolttokennoissa on yksinkertaisuutensa vuoksi hyvä toimintavarmuus ja suuri energiatiheys. Niitä voidaan myös käyttää siellä, missä sähkövirtaa ei ole saatavissa tai akkuteknologia ei ole riittävä”, sanoo Kimmo Mustonen.

Tutkimuksessa olivat Aalto-yliopiston lisäksi mukana CNRS-tutkimuskeskus Ranskassa ja Wienin yliopisto Itävallassa.

Artikkeli:

Mesoporous Single-Atom-Doped Graphene‒Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions.  Mohammad Tavakkoli, Emmanuel Flahaut, Pekka Peljo, Jani Sainio, Fatemeh Davodi, Egor V. Lobiak, Kimmo Mustonen and Esko I Kauppinen ACS Catal. 2020, https://doi.org/10.1021/acscatal.0c00352

Avainsanat

Yhteyshenkilöt

Mohammad Tavakkoli (englanniksi)
Tutkijatohtori
Aalto-yliopisto
puh. 050 414 0950
mohammad.tavakkoli@aalto.fi


Kimmo Mustonen
Vanhempi tutkija
Wienin yliopisto
puh. +43 (0) 677 615 87996
kimmo.mustonen@univie.ac.at

Kuvat

Kaaviokuva grafeenin ja hiilinanoputken muodostamasta hybridinanomateriaalista, kun materiaalin yksittäisiä atomeja on korvattu epäpuhtausatomeilla. Materiaali katalysoi tehokkaasti tärkeitä sähkökemiallisia reaktioita veden elektrolyysilaitteissa sekä polttokennoissa. Kuva: Aalto-yliopisto
Kaaviokuva grafeenin ja hiilinanoputken muodostamasta hybridinanomateriaalista, kun materiaalin yksittäisiä atomeja on korvattu epäpuhtausatomeilla. Materiaali katalysoi tehokkaasti tärkeitä sähkökemiallisia reaktioita veden elektrolyysilaitteissa sekä polttokennoissa. Kuva: Aalto-yliopisto
Lataa

Linkit

Tietoja julkaisijasta

Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.

aalto.fi

facebook.com/aaltouniversity

bsky.app/profile/aalto.fi

youtube.com/aaltouniversity

 

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Aalto-yliopisto

KAJ-yhtyeen Eurooppaa kiertänyt sauna mallinnettiin 3D:nä – Aalto-yliopisto tallentaa Pohjanmaan kulttuuriperintöä virtuaalitodellisuuteen16.5.2025 13:50:00 EEST | Tiedote

Kuka tahansa voi kurkistaa sisään Euroopan sydämet valloittaneen KAJ-yhtyeen kuuluisaan saunaan, sillä se on nyt mallinnettu 3D:nä. Aalto-yliopiston tutkijat kuvasivat saunan Vöyrillä osana laajempaa hanketta, jossa tallennetaan pohjalaista kulttuuriperintöä uudella tavalla. 3D-malli saunasta on nyt median vapaasti ladattavissa tästä kansiosta. Aalto-yliopiston Rakennetun ympäristön mittauksen ja mallinnuksen instituutti eli MeMo on parhaillaan Pohjanmaan kiertueella mallintamassa paikallisia museoita, rakennuksia ja esineitä. Tarkoituksena on kehittää uudenlaisia tapoja visualisoida ja pelillistää kulttuuriperintöä, ja näin innostaa nuoria sen pariin. Samalla luodaan saavutettavia virtuaalikokemuksia – teekkarimaisella rohkeudella, MeMon johtaja Hannu Hyyppä muistuttaa. Mallinnusta tehdään useilla erilaisilla 3D-teknologioilla. ”Drooniteknologialla mallinnamme rakennetun ympäristön. Tätä yhdistetään sitten laserkeilausaineistoon, jota otetaan sekä ulkoa että sisältä. Erilaiset kamera-

Aalto-yliopiston muodin ja tekstiiliosaamisen kärkitapahtuma Näytös/Näyttely25 nyt laajempana kuin koskaan14.5.2025 08:45:00 EEST | Tiedote

Toukokuun lopussa kansainvälisen muoti- ja tekstiilimaailman katseet kohdistuvat Aalto-yliopistoon ja sen kärkitapahtumaan Näytös/Näyttely25. Mukana on koko Aallon tekstiilin, vaatteen ja muodin alueen osaaminen, kun sekä muodin kandidaattipääaineesta että muodin ja tekstiilin maisteripääaineesta (Fashion, Clothing and Textile Design) valmistuvat opiskelijat esittelevät opinnäytetyönsä. Tapahtuma on kaksiosainen. Näytös25-muotinäytöstä on mahdollista seurata livelähetyksenä verkossa osoitteessa aalto.fashion tai Instagram-tilillä @aalto_fashion torstaina 22.5.2025 alkaen klo 20.30. Tekstiilin, vaatteen ja muodin konsepteja näyttelyn muodossa esittelevä Näyttely25 on yleisölle avoinna 16.–31.5.2025 Otaniemen kampuksen Väre-rakennuksessa. Suomalaiselle muoti- ja tekstiiliosaamiselle on paljon kysyntää Muoti peilaa ympäröivän yhteiskunnan tilaa ja on jatkuvassa muutoksessa. Tällä hetkellä kestävyyskriisin keskellä kamppaileva maailma tarvitsee erityisen paljon luovien alojen tarjoamaa pos

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme
World GlobeA line styled icon from Orion Icon Library.HiddenA line styled icon from Orion Icon Library.Eye