Aalto-yliopisto

Embargo 23.12. klo 18.00 Fyysikot oppivat hallitsemaan nanolasereita etäältä magneettikentän avulla – tutkimus voi osoittaa tien kohti ennennäkemättömän vakaata signaalinkäsittelyä

Jaa
Ilmiön salaisuus on poikkeuksellisessa materiaalissa ja sopivasti järjestetyissä nanopartikkeleissa.
Nanolaser kytkettynä päälle (ylhäällä) ja pois päältä (alhaalla) ulkoisen magneettikentän avulla. Vasemmalla tarkennettuna yksittäinen nanopartikkeli ja magneettikenttä sen ympärillä. Kuva: Aalto-yliopisto.
Nanolaser kytkettynä päälle (ylhäällä) ja pois päältä (alhaalla) ulkoisen magneettikentän avulla. Vasemmalla tarkennettuna yksittäinen nanopartikkeli ja magneettikenttä sen ympärillä. Kuva: Aalto-yliopisto.

Laserien ultrakirkkaita säteitä hyödynnetään jo laajasti eri aloilla, kuten laajakaistaviestinnässä ja lääkediagnostiikan laitteissa. Noin kymmenen vuotta sitten kehitettiin plasmonisina nanolasereina tunnetut ultrapienet ja nopeat laserit, jotka ovat esimerkiksi parantaneet lääkediagnostiikassa käytettyjen bioantureiden herkkyyttä.

Tähän asti nanolasereiden kytkeminen on edellyttänyt niiden suoraa manipuloimista, joko mekaanisesti tai lämmön tai valon avulla. Nyt Aalto-yliopiston tutkijat ovat löytäneet keinon hallita nanolasereita etäältä, magneettien avulla.

”Osoitimme, että voimme hallita laserointisignaalia ulkoisen magneettikentän avulla. Muuttamalla magneettisten nanorakenteiden ympärillä olevaa magneettikenttää voimme kytkeä laseroinnin päälle ja pois päältä”, toteaa Aalto-yliopiston professori Sebastiaan van Dijken.

Yleensä plasmonisten nanolaserien materiaalina käytetään yleisiä jalometalleja, kuten kultaa tai hopeaa. Tutkimusryhmä käytti sen sijaan valmistukseen magneettisia koboltti-platinananopartikkeleita, jotka kuvioitiin piidioksidilla eristetyn kultakalvon päälle.

Mittaustulosten analyysi osoitti, että sekä materiaali että nanopisteiden jaksollinen ryhmittely olivat edellytyksiä päälle-pois-kytkentämekanismille.

Ennennäkemättömiä muutoksia

Uusi kytkentämekanismi voi osoittautua hyödylliseksi monissa optisia signaaleja hyödyntävissä  laitteissa. Tutkimuksen merkitys uudella, topologisen fotoniikan alalla voi kuitenkin olla vielä tärkeämpi. Topologinen fotoniikka pyrkii tuottamaan valosignaaleja, jotka eivät ole herkkiä ulkoisille häiriöille ja valmistusvirheille.

”Tarkoituksena on luoda tiettyjä optisia tiloja, joiden ominaisuudet mahdollistavat signaalien kuljettamisen ja suojaamisen häiriöiltä. Toisin sanoen jos laitteessa on pieniä virheitä tai materiaali hiukan epäpuhdasta, valo silti voi edetä häiriintymättä, sillä se on topologisesti suojattu”, van Dijken kertoo. 

Toistaiseksi optisten, topologisesti suojattujen signaalien luominen magneettisten materiaalien avulla on edellyttänyt vahvoja magneettikenttiä. Uusi tutkimus osoittaa, että magneettiset efektit voivat olla yllättävän suuria, kun käytetään tietynlaisen symmetrian mukaan järjestettyjä nanopartikkeita.

Tutkijat uskovat, että löydöt voivat johtaa uusiin topologisesti suojattuihin nanoskaalan signaaleihin.

”Tavallisesti magneettiset materiaalit aiheuttavat vain hyvin vähäisiä muutoksia valon käyttäytymiseen. Näissä kokeissa pystyimme tuottamaan hyvin merkittäviä muutoksia optiseen vasteeseen – jopa 20 prosenttia. Tämä on ennennäkemätöntä”, van Dijken toteaa.

”Tuloksilla on huomattava merkitys topologisten fotonisten rakenteiden tuottamisen kannalta, koska ne osoittavat magnetisaation vaikutuksen korostuvan, kun nanopartikkelit järjestetään sopivan geometrian mukaisesti”, sanoo akatemiaprofessori Päivi Törmä.

Tulokset syntyivät professori van Dijkenin johtaman Nanomagnetism and Spintronics -ryhmän sekä professori Törmän johtaman Quantum Dynamics ryhmän pitkäaikaisen yhteistyön ansiosta. Molemmat ryhmät työskentelevät Aalto-yliopiston teknillisen fysiikan laitoksella. Tutkijat suorittivat kokeet kansallista OtaNano-tutkimusinfrastruktuuria hyödyntäen.

Tutkimustulokset julkaistaan Nature Photonics -lehdessä 23.12. (linkki embargon jälkeen)

Avainsanat

Yhteyshenkilöt

Päivi Törmä
Akatemiaprofessori
Aalto-yliopisto
paivi.torma@aalto.fi
+358503826770


Sebastiaan van Dijken (englanniksi)
Professori
Aalto-yliopisto
sebastiaan.van.dijken@aalto.fi
+358503160969

Kuvat

Nanolaser kytkettynä päälle (ylhäällä) ja pois päältä (alhaalla) ulkoisen magneettikentän avulla. Vasemmalla tarkennettuna yksittäinen nanopartikkeli ja magneettikenttä sen ympärillä. Kuva: Aalto-yliopisto.
Nanolaser kytkettynä päälle (ylhäällä) ja pois päältä (alhaalla) ulkoisen magneettikentän avulla. Vasemmalla tarkennettuna yksittäinen nanopartikkeli ja magneettikenttä sen ympärillä. Kuva: Aalto-yliopisto.
Lataa

Linkit

Tietoja julkaisijasta

Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.

aalto.fi

facebook.com/aaltouniversity

bsky.app/profile/aalto.fi

youtube.com/aaltouniversity

 

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Aalto-yliopisto

KAJ-yhtyeen Eurooppaa kiertänyt sauna mallinnettiin 3D:nä – Aalto-yliopisto tallentaa Pohjanmaan kulttuuriperintöä virtuaalitodellisuuteen16.5.2025 13:50:00 EEST | Tiedote

Kuka tahansa voi kurkistaa sisään Euroopan sydämet valloittaneen KAJ-yhtyeen kuuluisaan saunaan, sillä se on nyt mallinnettu 3D:nä. Aalto-yliopiston tutkijat kuvasivat saunan Vöyrillä osana laajempaa hanketta, jossa tallennetaan pohjalaista kulttuuriperintöä uudella tavalla. 3D-malli saunasta on nyt median vapaasti ladattavissa tästä kansiosta. Aalto-yliopiston Rakennetun ympäristön mittauksen ja mallinnuksen instituutti eli MeMo on parhaillaan Pohjanmaan kiertueella mallintamassa paikallisia museoita, rakennuksia ja esineitä. Tarkoituksena on kehittää uudenlaisia tapoja visualisoida ja pelillistää kulttuuriperintöä, ja näin innostaa nuoria sen pariin. Samalla luodaan saavutettavia virtuaalikokemuksia – teekkarimaisella rohkeudella, MeMon johtaja Hannu Hyyppä muistuttaa. Mallinnusta tehdään useilla erilaisilla 3D-teknologioilla. ”Drooniteknologialla mallinnamme rakennetun ympäristön. Tätä yhdistetään sitten laserkeilausaineistoon, jota otetaan sekä ulkoa että sisältä. Erilaiset kamera-

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme
World GlobeA line styled icon from Orion Icon Library.HiddenA line styled icon from Orion Icon Library.Eye