Embargo 23.12. klo 18.00 Fyysikot oppivat hallitsemaan nanolasereita etäältä magneettikentän avulla – tutkimus voi osoittaa tien kohti ennennäkemättömän vakaata signaalinkäsittelyä

Laserien ultrakirkkaita säteitä hyödynnetään jo laajasti eri aloilla, kuten laajakaistaviestinnässä ja lääkediagnostiikan laitteissa. Noin kymmenen vuotta sitten kehitettiin plasmonisina nanolasereina tunnetut ultrapienet ja nopeat laserit, jotka ovat esimerkiksi parantaneet lääkediagnostiikassa käytettyjen bioantureiden herkkyyttä.
Tähän asti nanolasereiden kytkeminen on edellyttänyt niiden suoraa manipuloimista, joko mekaanisesti tai lämmön tai valon avulla. Nyt Aalto-yliopiston tutkijat ovat löytäneet keinon hallita nanolasereita etäältä, magneettien avulla.
”Osoitimme, että voimme hallita laserointisignaalia ulkoisen magneettikentän avulla. Muuttamalla magneettisten nanorakenteiden ympärillä olevaa magneettikenttää voimme kytkeä laseroinnin päälle ja pois päältä”, toteaa Aalto-yliopiston professori Sebastiaan van Dijken.
Yleensä plasmonisten nanolaserien materiaalina käytetään yleisiä jalometalleja, kuten kultaa tai hopeaa. Tutkimusryhmä käytti sen sijaan valmistukseen magneettisia koboltti-platinananopartikkeleita, jotka kuvioitiin piidioksidilla eristetyn kultakalvon päälle.
Mittaustulosten analyysi osoitti, että sekä materiaali että nanopisteiden jaksollinen ryhmittely olivat edellytyksiä päälle-pois-kytkentämekanismille.
Ennennäkemättömiä muutoksia
Uusi kytkentämekanismi voi osoittautua hyödylliseksi monissa optisia signaaleja hyödyntävissä laitteissa. Tutkimuksen merkitys uudella, topologisen fotoniikan alalla voi kuitenkin olla vielä tärkeämpi. Topologinen fotoniikka pyrkii tuottamaan valosignaaleja, jotka eivät ole herkkiä ulkoisille häiriöille ja valmistusvirheille.
”Tarkoituksena on luoda tiettyjä optisia tiloja, joiden ominaisuudet mahdollistavat signaalien kuljettamisen ja suojaamisen häiriöiltä. Toisin sanoen jos laitteessa on pieniä virheitä tai materiaali hiukan epäpuhdasta, valo silti voi edetä häiriintymättä, sillä se on topologisesti suojattu”, van Dijken kertoo.
Toistaiseksi optisten, topologisesti suojattujen signaalien luominen magneettisten materiaalien avulla on edellyttänyt vahvoja magneettikenttiä. Uusi tutkimus osoittaa, että magneettiset efektit voivat olla yllättävän suuria, kun käytetään tietynlaisen symmetrian mukaan järjestettyjä nanopartikkeita.
Tutkijat uskovat, että löydöt voivat johtaa uusiin topologisesti suojattuihin nanoskaalan signaaleihin.
”Tavallisesti magneettiset materiaalit aiheuttavat vain hyvin vähäisiä muutoksia valon käyttäytymiseen. Näissä kokeissa pystyimme tuottamaan hyvin merkittäviä muutoksia optiseen vasteeseen – jopa 20 prosenttia. Tämä on ennennäkemätöntä”, van Dijken toteaa.
”Tuloksilla on huomattava merkitys topologisten fotonisten rakenteiden tuottamisen kannalta, koska ne osoittavat magnetisaation vaikutuksen korostuvan, kun nanopartikkelit järjestetään sopivan geometrian mukaisesti”, sanoo akatemiaprofessori Päivi Törmä.
Tulokset syntyivät professori van Dijkenin johtaman Nanomagnetism and Spintronics -ryhmän sekä professori Törmän johtaman Quantum Dynamics ryhmän pitkäaikaisen yhteistyön ansiosta. Molemmat ryhmät työskentelevät Aalto-yliopiston teknillisen fysiikan laitoksella. Tutkijat suorittivat kokeet kansallista OtaNano-tutkimusinfrastruktuuria hyödyntäen.
Tutkimustulokset julkaistaan Nature Photonics -lehdessä 23.12. (linkki embargon jälkeen)
Avainsanat
Yhteyshenkilöt
Päivi Törmä
Akatemiaprofessori
Aalto-yliopisto
paivi.torma@aalto.fi
+358503826770
Sebastiaan van Dijken (englanniksi)
Professori
Aalto-yliopisto
sebastiaan.van.dijken@aalto.fi
+358503160969
Kuvat

Linkit
Tietoja julkaisijasta
Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
James Webb -teleskoopin huikeita galaksikuvia nyt kaikkien saatavilla6.6.2025 12:15:00 EEST | Tiedote
COSMOS Web -hanke on kartoittanut osan syvästä avaruudesta tarkemmin kuin koskaan aiemmin.
Tutkimus: Puurakentaminen voi vähentää uusien rakennusten alkuvaiheen päästöjä lähes kolmanneksen4.6.2025 12:44:18 EEST | Tiedote
Uusi tutkimus korostaa puun ilmastohyötyjä rakentamisessa ja vaatii selkeämpiä määritelmiä hybridirakennuksille.
New wooden buildings can slash upfront emissions by nearly a third, study shows4.6.2025 12:44:18 EEST | Press release
New research highlights the climate benefits of wood in construction and calls for clearer definitions for hybrid buildings.
Startupit ovat Suomelle valtava mahdollisuus – Aalto-yliopiston uusi yrittäjyysohjelma tähtää harppaukseen niiden määrässä ja menestyksessä2.6.2025 10:00:42 EEST | Tiedote
Ideana on luoda parhaiden osaajien yhteisö, joka nostaa kasvuyrittäjien taitotasoa ja kunnianhimoa, sanoo Mårten Mickos, yksi ohjelman vetäjistä.
KAJ-yhtyeen Eurooppaa kiertänyt sauna mallinnettiin 3D:nä – Aalto-yliopisto tallentaa Pohjanmaan kulttuuriperintöä virtuaalitodellisuuteen16.5.2025 13:50:00 EEST | Tiedote
Kuka tahansa voi kurkistaa sisään Euroopan sydämet valloittaneen KAJ-yhtyeen kuuluisaan saunaan, sillä se on nyt mallinnettu 3D:nä. Aalto-yliopiston tutkijat kuvasivat saunan Vöyrillä osana laajempaa hanketta, jossa tallennetaan pohjalaista kulttuuriperintöä uudella tavalla. 3D-malli saunasta on nyt median vapaasti ladattavissa tästä kansiosta. Aalto-yliopiston Rakennetun ympäristön mittauksen ja mallinnuksen instituutti eli MeMo on parhaillaan Pohjanmaan kiertueella mallintamassa paikallisia museoita, rakennuksia ja esineitä. Tarkoituksena on kehittää uudenlaisia tapoja visualisoida ja pelillistää kulttuuriperintöä, ja näin innostaa nuoria sen pariin. Samalla luodaan saavutettavia virtuaalikokemuksia – teekkarimaisella rohkeudella, MeMon johtaja Hannu Hyyppä muistuttaa. Mallinnusta tehdään useilla erilaisilla 3D-teknologioilla. ”Drooniteknologialla mallinnamme rakennetun ympäristön. Tätä yhdistetään sitten laserkeilausaineistoon, jota otetaan sekä ulkoa että sisältä. Erilaiset kamera-
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme