Business Wire

New Research from AMGTA Demonstrates Sustainable Benefits of Binder Jet 3D Printing

Share

The Additive Manufacturer Green Trade Association (“AMGTA”), a global advocacy group focused on promoting sustainable additive manufacturing (AM) industry practices, announced today the preliminary results of a life-cycle analysis study titled “Comparative Life-Cycle Assessment: Comparison of Casting vs Binder Jetting for an Industrial Part.” The study, commissioned by the AMGTA and conducted by the Yale School of the Environment (YSE) in partnership with Desktop Metal (NYSE: DM), a global leader in AM technologies for mass production, and Trane Technologies (NYSE: TT), a global climate innovator, analyzed a steel scroll chiller in an HVAC system from Trane to determine the comparative manufacturing impact of binder jet 3D printing versus traditional metal casting. The preliminary results confirmed a dramatic 38% reduction in greenhouse gas (GHG) emissions through the binder jetting process primarily driven by reduced energy demand during the production phase.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20230728084474/en/

To view this piece of content from mms.businesswire.com, please give your consent at the top of this page.

Desktop Metal’s binder jet 3D printing technology (Photo: Desktop Metal)

“Prior to this project, uncertainty about the life cycle emissions of binder jetting versus conventional manufacturing approaches was a barrier to AM adoption,” said Kevin Klug, Lead Additive Manufacturing Engineer for Trane Technologies. “With the results of this study, Trane Technologies is in a better position to comprehensively consider AM's cost, productivity and environmental impact earlier in a product's design cycle, when risk is lowest, and the potential benefits are highest.”

Key takeaways from the from the study include:

  • Significant Reduction in Greenhouse Gas Emissions. The additive process showed a 38% reduction in greenhouse gas emissions based on binder jetting as compared to traditional casting for the parts studied.
  • Importance of Energy Mix. Similar to previous findings, the study found that the manufacturing facility’s energy mix at the location of generation, and whether that energy grid was produced using sustainable means, had a significant impact on GHG emissions.
  • Negligible Value of Redesign for Lightweighting. The study found that the potential benefits of redesigning the scroll chiller for lightweighting using a lattice-type structure were insignificant with respect to GHG emissions. The overall dimensions of the parts being produced, and the efficient use of print volumes, played a much more important factor than lightweighting. Lightweighting may provide environmental benefits in the use phase which is not included in this study.
  • Material Production Impacts. While this study showed the environmental impacts of source powder production were approximately twice that for casting steel, such an increase represented a small portion of overall GHG emissions and did not play a significant role in the overall findings.
  • Overall, Binder Jetting Produced a More Sustainable Part. The dramatic reduction of GHG emissions from energy demand by binder jetting versus traditional manufacturing was by far the most important finding of the YSE study.

“The release of these findings is significant for the AM industry and for companies in the broader manufacturing sector who are looking for more sustainable production methods,” said Sherri Monroe, the AMGTA’s Executive Director. “With this study, we are able to quantify the reduced energy demand of binder jetting versus traditional casting while possibly providing some surprises in the negligible impact offered by lightweighting in this specific use case.”

One of the drivers behind double-digit annual growth in additive manufacturing over the past decade has been the adoption of binder jetting across multiple industries, driven by cost advantages, large volume production, and the potential for sustainability gains.

“We’re delighted to have another piece of independent, third-party research that validates how binder jetting is a greener approach to metal part production,” said Jonah Myerberg, Chief Technology Officer, Desktop Metal. “Harmful emissions from traditional metal manufacturing need to be lowered with innovative technology approaches, but manufacturers need sound data—not greenwashing—to make good choices about how they produce their metal products. This new study from Yale, Trane Technologies and AMGTA demonstrates what our team at Desktop Metal has long believed based on our hands-on experience: binder jetting is a greener way to manufacture metal parts.”

The two-year YSE study analyzed the cradle-to-gate manufacturing life cycle of a scroll set comprised of a fixed scroll and orbiting scroll manufactured by Trane Technologies as part of an HVAC system. The AMGTA commissioned the study in 2021 to better understand the potential for binder jetting to replace traditional sand casting as a more sustainable method of production. The study evaluated a traditional casting process followed by machining, plating, and finishing steps in Mexico. The same scroll set design was evaluated through an additive binder jetting process of 3D printing, curing, and sintering followed by the same plating and finishing steps in the same location in Mexico.

The results of the study showed a 38% reduction in GHG emissions for the additive manufacturing process as compared to the traditional casting-based method. Due to the nature of the binder jetting, YSE’s researchers concluded that a redesign for lightweighting via a lattice-type structure may not necessarily lead to additional reductions in GHG emissions, primarily because the majority of electricity consumed related to printing, curing and sintering steps would not be impacted by lattice-type structures. The analysis suggests a 10% mass reduction in the scroll set would lead to a 1% reduction in GHG emissions.

Lifecycle GHG emissions were significantly impacted by the local energy mix at the site of production. For this study, both the traditionally manufactured part set, and the additively manufactured part set, were evaluated at the same location with the same energy mix. Researchers also evaluated additional potential production locations and their corresponding energy mixes. The findings indicate that such sensitivity to the grid “cleanness” needs to be considered when comparing AM with traditional processes to ensure a valid conclusion. While production in a more sustainable energy location provides environmental benefits for both production processes, the difference in environmental impacts between the methods diminishes as the energy mix becomes more “green.” Production volumes also play a significant role in GHG emissions of additive manufacturing especially for less efficient use of build volumes and small batch operations.

“Trane Technologies is committed to boldly challenging what's possible for a sustainable world,” added Kevin Klug. “That includes designing advanced climate control solutions that can be manufactured and operated with reduced environmental impact. Metal additive manufacturing (AM) will become an increasingly viable tool in that pursuit, and binder jetting's comparably higher speed and lower cost among AM technologies make it particularly promising for manufacturing HVAC components at relevant production volumes.”

“This study in collaboration with Desktop Metal is a clear win for manufacturers like Trane which are exploring more sustainable manufacturing options. Binder jetting is a proven technology with clear and quantifiable advantages over traditional methods,” Sherri Monroe said. “We appreciate Trane’s leadership in pursuing more sustainable practices, their participation in this study, their willingness to share their processes and data, and interest in sharing this information with the broader manufacturing community.”

Highlights from the study can be found on the AMGTA’s website, with full results expected to be published in early 2024 following a peer review process. The AMGTA says it expects to publish additional independent research throughout 2023. Additional information on this study and others conducted by the AMGTA can be found on the AMGTA website, www.AMGTA.org.

About the AMGTA

The AMGTA was launched in 2019 to better understand and promote the environmental benefits of additive manufacturing across the global economy. AMGTA members represent the entirety of the manufacturing spectrum - from design and raw materials to end products and users - focused on innovating better, more sustainable, and financially advantageous products through best additive practices. For more information, please contact Sherri Monroe or visit www.amgta.org.

To view this piece of content from cts.businesswire.com, please give your consent at the top of this page.

Contact information

Sherri Monroe
smonroe@amgta.org
954.308.0888

About Business Wire

For more than 50 years, Business Wire has been the global leader in press release distribution and regulatory disclosure.

Subscribe to releases from Business Wire

Subscribe to all the latest releases from Business Wire by registering your e-mail address below. You can unsubscribe at any time.

Latest releases from Business Wire

Nominations open for The MIDORI Prize for Biodiversity 2026 by AEON Environmental Foundation and the Secretariat of the Convention on Biological Diversity16.1.2026 10:00:00 EET | Press release

The call for nominations for The MIDORI Prize for Biodiversity 2026 is open from 2 February to 31 March 2026. Nominations are invited from members of the public through the AEON Environmental Foundation website at https://www.aeonkankyozaidan.or.jp/en/prize/. The Award Ceremony and Award Winners Forum of the 2026 edition of the Prize will be held on 27 August in Tokyo, Japan. These events will contribute to the global mobilization around COP 17 of the Convention on Biological Diversity (CBD), which will take place in Yerevan (Armenia) under the theme of “Taking action for Nature”. Co-organized by the AEON Environmental Foundation and the Secretariat of the CBD, the Prize is awarded to individuals who make outstanding contributions to global biodiversity-related objectives, including the conservation and sustainable use of biodiversity, and other environmental challenges such as climate change. To date, 21 individuals from 20 countries have received the prize. Established by the AEON En

Tigo Energy and Weco Certify MLPE-Inverter Compatibility to Simplify PV System Design16.1.2026 07:00:00 EET | Press release

Tigo Energy, Inc. (NASDAQ: TYGO) (“Tigo” or “Company”), a leading provider of intelligent solar and energy software solutions, today announced the Company has signed a certificate of compatibility with Weco S.r.l., documenting the compatibility between Tigo Flex MLPE products and hybrid solar inverters from Weco. The certification covers certain single-phase and three-phase Weco products and members of the Tigo TS4-A and TS4-X product families, when properly designed and installed. Together, these products are designed to deliver high-quality, enhanced value through a system that generates and manages solar energy more efficiently and delivers the features residential energy customers demand. “The compatibility between our inverter solutions and Tigo optimizers represents a significant step forward for the entire industry, and confirms our commitment to simplifying the work of solar professionals,” said Federico Cusumano, R&D manager at Weco S.r.l. “Thanks to this certification, design

Binarly to Unveil “Broken Trust” Research: Firmware Bypass Chains, BMC Persistence, and EDR Evasion16.1.2026 00:04:00 EET | Press release

Binarly, the industry leader in software and firmware supply-chain security, today announced an upcoming DistrictCon presentation “Broken Trust: Firmware Bypass Chains, BMC Persistence, and EDR Evasion.” The session will detail how firmware-level attack chains observed in shipped enterprise devices can effectively undermine modern endpoint defenses, enabling stealthy compromise and long-lived persistence. This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20260115834965/en/ Binarly Unveils Broken Trust Research: Firmware Bypass, BMC Persistence In this presentation, the Binarly REsearch team will dismantle the assumption of hardware trust by presenting multiple real-world firmware bypass chains. Alex Matrosov and Fabio Pagani will provide a deep dive into the specific vulnerability classes and exploitation primitives that make these attacks reliable in practice. The team will also deliver a live demonstration compromising a fully

World Economic Forum and Salesforce Empower Global Leaders With First-of-its-Kind Agentic Assistant for the 2026 Annual Meeting in Davos15.1.2026 20:06:00 EET | Press release

Salesforce (NYSE: CRM), the world’s #1 CRM, today announced the activation of the World Economic Forum’s institutional knowledge powered by Agentforce 360 to support over 3,000 of the world’s most influential leaders at the 2026 World Economic Forum Annual Meeting. The Forum has launched a new proactive, high-precision concierge app, “EVA,” built on the Agentforce 360 Platform, Salesforce’s agentic platform. EVA will empower attendees to move beyond traditional information access, with an AI agent that doesn’t just answer questions, but can reason, prioritize, and act on a leader’s behalf for the 2026 Annual Meeting. This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20260115571119/en/ Scheduled for January 19–23 in Davos, Switzerland, this year’s event is set to be the largest meeting in the organization's history. With over 450 high-impact sessions and thousands of specialized interactions, the gap between available insight and

Coolbrook Named on the 2026 Global Cleantech 10015.1.2026 19:14:00 EET | Press release

Coolbrook, a transformational technology and engineering company on a mission to decarbonise major industrial sectors like petrochemicals and chemicals, iron and steel, aluminium, and cement, has been named on Cleantech Group’s 2026 Global Cleantech 100. This annual list recognizes companies poised to deliver market-ready solutions that advance a cleaner, more resilient global future. The report highlights innovators addressing some of the world’s most urgent environmental and infrastructure challenges. The complimentary report introduces you to innovators advancing groundbreaking technologies and business models to enable us to act on the ever-increasing climate and environmental crisis. Following a 2025 marked by geopolitical volatility and shifting economic signals, the global cleantech ecosystem enters 2026 with slightly greater certainty - yet heightened competitive pressure. Growth is concentrating around two dominant themes: AI infrastructure and critical minerals. “The 2026 Glo

In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.

Visit our pressroom
World GlobeA line styled icon from Orion Icon Library.HiddenA line styled icon from Orion Icon Library.Eye