Embargo 23.12. klo 18.00 Fyysikot oppivat hallitsemaan nanolasereita etäältä magneettikentän avulla – tutkimus voi osoittaa tien kohti ennennäkemättömän vakaata signaalinkäsittelyä
Ilmiön salaisuus on poikkeuksellisessa materiaalissa ja sopivasti järjestetyissä nanopartikkeleissa.

Laserien ultrakirkkaita säteitä hyödynnetään jo laajasti eri aloilla, kuten laajakaistaviestinnässä ja lääkediagnostiikan laitteissa. Noin kymmenen vuotta sitten kehitettiin plasmonisina nanolasereina tunnetut ultrapienet ja nopeat laserit, jotka ovat esimerkiksi parantaneet lääkediagnostiikassa käytettyjen bioantureiden herkkyyttä.
Tähän asti nanolasereiden kytkeminen on edellyttänyt niiden suoraa manipuloimista, joko mekaanisesti tai lämmön tai valon avulla. Nyt Aalto-yliopiston tutkijat ovat löytäneet keinon hallita nanolasereita etäältä, magneettien avulla.
”Osoitimme, että voimme hallita laserointisignaalia ulkoisen magneettikentän avulla. Muuttamalla magneettisten nanorakenteiden ympärillä olevaa magneettikenttää voimme kytkeä laseroinnin päälle ja pois päältä”, toteaa Aalto-yliopiston professori Sebastiaan van Dijken.
Yleensä plasmonisten nanolaserien materiaalina käytetään yleisiä jalometalleja, kuten kultaa tai hopeaa. Tutkimusryhmä käytti sen sijaan valmistukseen magneettisia koboltti-platinananopartikkeleita, jotka kuvioitiin piidioksidilla eristetyn kultakalvon päälle.
Mittaustulosten analyysi osoitti, että sekä materiaali että nanopisteiden jaksollinen ryhmittely olivat edellytyksiä päälle-pois-kytkentämekanismille.
Ennennäkemättömiä muutoksia
Uusi kytkentämekanismi voi osoittautua hyödylliseksi monissa optisia signaaleja hyödyntävissä laitteissa. Tutkimuksen merkitys uudella, topologisen fotoniikan alalla voi kuitenkin olla vielä tärkeämpi. Topologinen fotoniikka pyrkii tuottamaan valosignaaleja, jotka eivät ole herkkiä ulkoisille häiriöille ja valmistusvirheille.
”Tarkoituksena on luoda tiettyjä optisia tiloja, joiden ominaisuudet mahdollistavat signaalien kuljettamisen ja suojaamisen häiriöiltä. Toisin sanoen jos laitteessa on pieniä virheitä tai materiaali hiukan epäpuhdasta, valo silti voi edetä häiriintymättä, sillä se on topologisesti suojattu”, van Dijken kertoo.
Toistaiseksi optisten, topologisesti suojattujen signaalien luominen magneettisten materiaalien avulla on edellyttänyt vahvoja magneettikenttiä. Uusi tutkimus osoittaa, että magneettiset efektit voivat olla yllättävän suuria, kun käytetään tietynlaisen symmetrian mukaan järjestettyjä nanopartikkeita.
Tutkijat uskovat, että löydöt voivat johtaa uusiin topologisesti suojattuihin nanoskaalan signaaleihin.
”Tavallisesti magneettiset materiaalit aiheuttavat vain hyvin vähäisiä muutoksia valon käyttäytymiseen. Näissä kokeissa pystyimme tuottamaan hyvin merkittäviä muutoksia optiseen vasteeseen – jopa 20 prosenttia. Tämä on ennennäkemätöntä”, van Dijken toteaa.
”Tuloksilla on huomattava merkitys topologisten fotonisten rakenteiden tuottamisen kannalta, koska ne osoittavat magnetisaation vaikutuksen korostuvan, kun nanopartikkelit järjestetään sopivan geometrian mukaisesti”, sanoo akatemiaprofessori Päivi Törmä.
Tulokset syntyivät professori van Dijkenin johtaman Nanomagnetism and Spintronics -ryhmän sekä professori Törmän johtaman Quantum Dynamics ryhmän pitkäaikaisen yhteistyön ansiosta. Molemmat ryhmät työskentelevät Aalto-yliopiston teknillisen fysiikan laitoksella. Tutkijat suorittivat kokeet kansallista OtaNano-tutkimusinfrastruktuuria hyödyntäen.
Tutkimustulokset julkaistaan Nature Photonics -lehdessä 23.12. (linkki embargon jälkeen)
Avainsanat
Yhteyshenkilöt
Päivi Törmä
Akatemiaprofessori
Aalto-yliopisto
paivi.torma@aalto.fi
+358503826770
Sebastiaan van Dijken (englanniksi)
Professori
Aalto-yliopisto
sebastiaan.van.dijken@aalto.fi
+358503160969
Kuvat

Linkit
Tietoja julkaisijasta
Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu 12 000 opiskelijaa ja yli 4000 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Rintasyöpäsolu leviää tekemällä kudosmateriaaliin käytäviä – uusi mittausmenetelmä paljasti hämmästyttävän tiedon solun käyttämistä voimista12.8.2022 07:48:32 EEST | Tiedote
Mittaukset osoittivat, että solu tuottaa voimasykäyksiä paljon lyhyemmissä sykleissä kuin aiemmin on ajateltu. Aalto-yliopiston ja Stanfordin yliopiston kehittämä mittausmenetelmä voi auttaa rintasyöpätutkimusta ja vauhdittaa lääkkeiden kehitystä.
Tutkijat tekivät ekoliimaa, joka voi korvata terveydelle haitalliset liimat puurakentamisessa10.8.2022 15:49:53 EEST | Tiedote
Uusi valmistusprosessi on nopea ja energiatehokas. Tuloksena on luja, myrkytön ja tulenkestävä liima – ja suuri mahdollisuus suomalaiselle biotaloudelle.
Tutkijat loivat nanopartikkeleista materiaalin, joka voi auttaa muun muassa havaitsemaan antibiootteja vedestä2.8.2022 14:49:51 EEST | Tiedote
Ultraohut, joustava kalvo voi osoittautua hyödylliseksi myös puettavien laitteiden kehittämisessä.
Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja20.6.2022 10:05:21 EEST | Tiedote
Kvanttioptisiin antureihin perustuva aivokuvantamislaite avaa uusia mahdollisuuksia myös ihmisvauvojen aivojen tutkimiseen.
TILAISUUS PERUUTETTU: Mediakutsu: Mitä kvanttiteknologiassa tapahtuu juuri nyt? Vielä ehdit mukaan kvanttikahveille 16. kesäkuuta!13.6.2022 08:32:55 EEST | Tiedote
Kvanttikahveilla voit kysyä alan huipuilta mitä vain kvanttiteknologiasta. Kvanttikahveilla on paikalla useita tutkijoita, joiden erikoisaloja ovat muun muassa kvanttilaskenta, kubitit, kvanttimateriaalit, aivomittaukset ja kvanttivalonlähteet.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme