EMBARGO 6.5.2021 klo 21.00: Tutkijat onnistuivat kiertämään kvanttimekaniikan kulmakivenä pidetyn epätarkkuusperiaatteen - välineinä kylmät kvanttirummut

Kvanttimekaniikan tärkeimpiä tuloksia on epätarkkuusperiaate, jonka Werner Heisenberg esitti 1920-luvun lopulla. Sen mukaan alkeishiukkaset, esimerkiksi sähkövirtaa kuljettavat elektronit, voivat käyttäytyä aaltoliikkeen tavoin. Tällöin hiukkasella ei voi olla samanaikaisesti hyvin määriteltyä paikkaa sekä nopeutta. Esimerkiksi nopeuden mittaaminen aiheuttaa häiriöitä hiukkasen paikalle, eikä paikkaa voida sen vuoksi tarkkaan määrittää.
Aalto-yliopiston professori Mika A. Sillanpään vetämä, Suomen Akatemian Quantum Technology Finland - huippuyksikköön kuuluva tutkimusryhmä on nyt löytänyt tavan kiertää epätarkkuusperiaate. Tulokset julkaistaan perjantaina 7. toukokuuta arvostetussa Science-tiedelehdessä. Tutkijatiimiin kuului myös kokeen teoreettisen mallin kehittämisestä vastannut tutkijatohtori Matt Woolley South Walesin yliopistosta Australiasta.
Tutkijat käyttivät mittauksissa kahta rumpukalvoa, jotka ovat leveydeltään noin viidesosa hiuksen paksuudesta ja joita voidaan ajatella yhtenä värähtelijänä. Vaikka nanorummut ovat paljon yksittäisiä atomeita suurempia, ne saatiin kokeissa käyttäytymään kvanttimekaanisesti.
”Kahden rummun värähtelyt päätyvät kollektiiviseen kvanttitilaan, jossa ne värähtelevät vastakkaisissa vaiheissa siten, että kun toinen on liikkeen yhdessä ääripäässä, toinen on vastaavasti toisessa samalla ajanhetkellä. Tällaisessa tilanteessa rumpujen hetkellisen sijainnin kvanttimekaaninen epämääräisyys kumoutuu”, sanoo tutkijatohtori Laure Mercier de Lepinay Aalto-yliopistosta.
Tutkijat pystyivät siis häiriöttä mittaamaan samanaikaisesti rumpukalvojen paikan ja nopeuden – minkä ei Heisenbergin epätarkkuusperiaatteen perusteella pitäisi olla mahdollista. Tämän ansiosta tutkijat voivat määrittää värähtelijään vaikuttavia erittäin heikkoja voimia.
”Toisella rummulla on siis ikään kuin negatiivinen massa, jolloin se vastaa kaikkiin voimiin, myös kvanttimekaanisiin, vastakkaisella tavalla”, Sillanpää sanoo.
Tutkijat käyttivät ideaa hyväkseen ja esittivät toistaiseksi vahvimman todisteen siitä, että suuret kappaleet voivat päätyä niin sanottuun lomittuneeseen kvanttitilaan. Lomittuneessa tilassa hiukkaset tai kappaleet jakavat toistensa ominaisuuksia tavalla, joka on arkijärjen vastaista. Lomittuminen on perusta käynnissä olevalle kvanttiteknologian läpimurrolle. Kvanttitietokone voi suorittaa esimerkiksi lääkkeiden kehityksessä tarvittavaa laskentaa paljon nopeammin kuin mikään koskaan rakennettavissa oleva supertietokone.
Suurehkoissa kappaleissa, kuten nyt tutkituissa värähtelevissä rumpukalvoissa, kvanttimekaaniset ilmiöt tuhoutuvat hyvin herkästi ympäristön häiriöiden vaikutuksesta. Mittaukset suoritettiinkin hyvin matalissa lämpötiloissa, eli asteen sadasosan päässä absoluuttisesta nollapisteestä, -273 asteesta.
Tulevaisuudessa tutkimusryhmä käyttää näitä ideoita ja menetelmiä laboratoriotutkimuksissa, joissa pyritään selvittämään kvanttimekaniikan ja painovoiman yhteyttä. Värähtelevät kvanttirummut voivat olla myös sopivia kvanttiteknologiassa yhdistämään kvanttitietokoneita toisiinsa.
Tutkimuksessa on käytetty OtaNano-tutkimusinfrastuktuuria. Kansallinen ja avoin OtaNano tarjoaa korkeatasoisen kokeellisen ympäristön ja OtaNanon operoinnista vastaavat Aalto-yliopisto ja Teknologian tutkimuskeskus VTT.
Avainsanat
Yhteyshenkilöt
Mika A. Sillanpää
Professori
Aalto-yliopisto
mika.sillanpaa@aalto.fi
puh. 050 344 7330
Kuvat

Linkit
Tietoja julkaisijasta
Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa16.10.2025 12:00:00 EEST | Tiedote
Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa14.10.2025 08:10:00 EEST | Tiedote
Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Aalto-yliopiston tutkijat YK:n COP30-ilmastokokouksessa9.10.2025 10:45:00 EEST | Tiedote
Tarvitsetko asiantuntijahaastateltavaa ilmastoon liittyvistä teemoista? Aalto-yliopiston tutkijoiden ja professorien asiantuntemus on käytettävissä ennen YK:n ilmastokokousta ja sen aikana. Tutkijoitamme osallistuu myös kokoukseen Brasiliassa. Energiamurros Mika Järvinen (professori) taitaa energiamurroksen ison kuvan: minkä pitää muuttua ja miten. Hän keskittyy tutkimuksessaan hiilidioksidin talteenottoon, vedyn tuotantoon eri menetelmillä, sekä kestävien polttoaineiden valmistukseen. Opetuksessaan Järvinen keskittyy muun muassa uusiutuvan energian tuottamiseen tuuli- ja aurinkovoimalla. Järvinen on myös juuri julkaissut aiheesta laajan suosion saaneen oppikirjan, ja osaa esittää monimutkaiset asiat ymmärrettävästi. Järvinen on paikalla ilmastokokouksessa Brasiliassa 10.–16.11. Hänet tavoittaa numerosta +358 40 754 2171 ja sähköpostista mika.jarvinen@aalto.fi Rakentamisen tulevaisuus Matti Kuittinen (professori) tutkii kestävää rakentamista. Hänen johtamansa tutkimusryhmä tutkii sitä,
Endurance ei ollutkaan aikansa vahvin laiva ja sen puutteet olivat tiedossa – tutkimusmatkailija Shackletonin aluksen uppoamisesta paljastui uutta tietoa6.10.2025 13:00:00 EEST | Tiedote
Uusi tutkimus osoittaa, että tutkimusmatkailija Ernest Shackletonin kuuluisa Endurance-alus ei ollut rakenteellisesti riittävän kestävä ahtojäiden puristukseen. Shackleton myös tiesi aluksen puutteista ennen huonosti päättynyttä matkaansa Etelämantereelle.
The real reasons Endurance sank — study finds Shackleton knew of ship’s shortcomings6.10.2025 13:00:00 EEST | Press release
A world-first study reveals the famed polar explorer was aware of worrying structural shortcomings in the ill-fated ship — Endurance was not designed for compressive ice conditions — yet it set sail anyway.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme