Tutkijat kehittivät vaatteisiin piiloutuvaa aurinkokennoteknologiaa, joka kestää konepesua

Aurinkokennoja on aiemmissa tutkimuksissa kiinnitetty tekstiilien pinnalle, valmistettu kerroksena kankaan pintaan tai punottu lankamaisina kennoina osaksi tekstiilejä.
Aalto-yliopiston muotoilun ja teknillisen fysiikan laitoksen tutkijat kehittivät kolmivuotisessa Sun-powered Textiles -hankkeessa tavan liittää tekstiileihin aurinkokennoja niin että ne kestävät konepesua ja samalla piiloutuvat kankaaseen huomaamattomasti. Tutkijat ottivat suunnittelussa huomioon myös käytön jälkeisen kierrätyksen.
Kaupallisesti saatavien aurinkokennojen konepesun kestävyyttä ei ole aiemmin juuri tutkittu.
”Oletimme, että aurinkokennorakenne voisi hajota pesussa, aurinkokennoja kun ei ole tehty konepestäviksi. Pesu on raskas prosessi, jossa tekstiiliin ja aurinkokennoihin kohdistuu painetta ja iskuja erityisesti linkousvaiheessa”, sanoo Aalto-yliopiston muotoilun laitoksen projektiasiantuntija ja Barcelonan teknillisen yliopiston professori Elina Ilén.
Pesunkestävyyden saavuttamiseksi tutkijat laminoivat aurinkokennokomponentin kankaiden väliin vesitiiviillä polyuretaanikalvolla. Aurinkokennoja sisältäviä tekstiilejä pestiin kymmeniä kertoja 40 asteen lämpötilassa, ja fysiikan tutkija Farid Elsehrawy mittasi aurinkokennojen toiminnan aina kymmenen pesun välein.
Viisi kahdeksasta aurinkokennonäytteestä säilytti tehokkuutensa, ja kolme menetti noin viidesosan tehostaan. Pesut eivät rikkoneet kennoja eivätkä vahingoittaneet kangasta.
”Nyt kun kankaiden väliin laminoitu aurinkokenno on todettu pesunkestäväksi, kaikki muutkin komponentit pitää vielä onnistua suojaamaan. Ajatuksemme on, että kaikki älytekstiilin sähköiset osat voisivat olla samassa paketissa aurinkokennon kanssa. Silloin meillä olisi pesunkestävä tekstiilielektroniikkalaite, jonka paristoja ei tarvitse koskaan vaihtaa tai ladata”, sanoo teknillisen fysiikan laitoksen yliopistonlehtori Janne Halme.
Kestoa ja kierrätystä
Tekstiilin alle laitettavan aurinkokennon täytyy olla pinta-alaltaan moninkertaisesti suurempi kuin pinnalle asetetun kennon, jos sillä halutaan tuottaa sama määrä energiaa. Tavallinen kangas syö noin 70 prosenttia kennon kapasiteetista, harsomainen materiaali vähemmän.
Tekstiilien valonläpäisykykyyn vaikuttavat kuidun materiaali, läpinäkyvyys ja poikkileikkaus, lankojen rakenne ja kankaan tiheys, ja sidos mahdollisine punontoineen ja reikineen, sekä värit ja viimeistysaineet. Vaaleat värit päästävät tummia paremmin valoa läpi, mutta myös täysin musta, läpinäkymätön kangas voi toimia.
Tutkimuksessa käytetyt kaupalliset aurinkokennot olivat yksikiteisiä piikennoja. Ne pystyvät hyödyntämään myös näkymätöntä valoa, jota on suurin osa auringonvalosta. Näkymätöntä valoa on esimerkiksi infrapunavalo.
Tekstiiliin piilottaminen syö aurinkokennon tehoa mutta parantaa sen kestävyyttä, sillä kenno on paremmin suojassa käytöstä aiheutuvilta rasituksilta kuin pinnalle asetettu kenno.
”Pinnalla oleva kenno myös dominoi vaatteen ulkonäköä tehden siitä robottimaisen haarniskan. Tekstiilin sisään liitetty kenno tekee tuotteesta paljon hyväksyttävämmän ja antaa mahdollisuuden suunnitella tuote ulkonäöllisesti käyttäjän tarpeiden mukaan eri käyttötarkoituksiin”, Ilén sanoo.
Tutkijat käyttivät hankkeessa mahdollisimman tehokkaasti kierrätettäviä, vain yhtä kuitua sisältäviä materiaaleja. Elektroniset komponentit saadaan poistettua kankaasta lämmittämällä ja repäisemällä.
”Aikaisemmin aurinkokennoja on toteutettu tekstiileihin punoslankoina, pieninä aurinkokennon palasina, ja se on todella huono idea kierrätyksen kannalta”, Halme sanoo.
Kosteusantureita ja kääntyviä verhoja
Saatavan energian määrä riippuu sekä kennojen koosta, määrästä että sijainnista. Energiantarpeen taas määrää sovellus. Merkittävää on se, lähettääkö sovellus dataa koko ajan vai esimerkiksi kerran minuutissa. Eniten energiaa kuluttavat tiedon lähettäminen, laskenta ja näytöt. Siksi tekstiileihin piilotetut kennot eivät riitä kännykän tai älykellon lataamiseen, mutta esimerkiksi lämpötilaa ja kosteutta mittaavien anturien tarpeeseen kyllä.
Tutkijatiimin mielestä työvaatteet ovat tällä hetkellä aurinkokennotekstiilien potentiaalisin sovellusalue. Ne ovat paksumpia kuin muut vaatteet, joten kankaaseen liitetyt kennot eivät muuta takin olemusta niin paljon.
”Myös verhot voisivat olla herkullinen paikka kerätä aurinkoenergiaa. Ne voisivat havaita valon määrää ja kääntyä sen mukaan”, Ilén sanoo.
Tutkimushankkeessa tavoitteena oli kehittää tekninen ratkaisu, jota voisi käyttää monissa eri sovelluksissa. Sovellusten kehittäjille Halme antaa neuvoksi pohtia ratkaisun tuomaa lisäarvoa:
“Tekstiilin alle piilotettuja aurinkokennoja kannattaa harkita energialähteeksi sellaiselle vähän virtaa kuluttavalle sähkölaitteelle, jonka syystä tai toisesta täytyy olla kiinnitetty tekstiiliin, näyttää ja tuntua tekstiililtä ja kestää konepesua – ja jonka pariston vaihtaminen tai lataaminen olisi kallista tai hankalaa."
Tutkimuksessa oli mukana myös Elina Palovuori muotoilun laitokselta.
Tutkimus oli osa Business Finlandin rahoittamaa Co-Innovation-hanketta, johon osallistuivat yrityskumppaneina Lindström, Foxa ja Haltian.
Lisätietoa:
Tutkimusartikkeli (emerald.com)
Sun-powered textiles - kysymyksiä ja vastauksia (aalto.fi)
Avainsanat
Yhteyshenkilöt
Yliopistonlehtori Janne Halme
puh. 050 344 1695
janne.halme@aalto.fi
Kuvat

Linkit
Tietoja julkaisijasta
Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa16.10.2025 12:00:00 EEST | Tiedote
Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa14.10.2025 08:10:00 EEST | Tiedote
Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Aalto-yliopiston tutkijat YK:n COP30-ilmastokokouksessa9.10.2025 10:45:00 EEST | Tiedote
Tarvitsetko asiantuntijahaastateltavaa ilmastoon liittyvistä teemoista? Aalto-yliopiston tutkijoiden ja professorien asiantuntemus on käytettävissä ennen YK:n ilmastokokousta ja sen aikana. Tutkijoitamme osallistuu myös kokoukseen Brasiliassa. Energiamurros Mika Järvinen (professori) taitaa energiamurroksen ison kuvan: minkä pitää muuttua ja miten. Hän keskittyy tutkimuksessaan hiilidioksidin talteenottoon, vedyn tuotantoon eri menetelmillä, sekä kestävien polttoaineiden valmistukseen. Opetuksessaan Järvinen keskittyy muun muassa uusiutuvan energian tuottamiseen tuuli- ja aurinkovoimalla. Järvinen on myös juuri julkaissut aiheesta laajan suosion saaneen oppikirjan, ja osaa esittää monimutkaiset asiat ymmärrettävästi. Järvinen on paikalla ilmastokokouksessa Brasiliassa 10.–16.11. Hänet tavoittaa numerosta +358 40 754 2171 ja sähköpostista mika.jarvinen@aalto.fi Rakentamisen tulevaisuus Matti Kuittinen (professori) tutkii kestävää rakentamista. Hänen johtamansa tutkimusryhmä tutkii sitä,
Endurance ei ollutkaan aikansa vahvin laiva ja sen puutteet olivat tiedossa – tutkimusmatkailija Shackletonin aluksen uppoamisesta paljastui uutta tietoa6.10.2025 13:00:00 EEST | Tiedote
Uusi tutkimus osoittaa, että tutkimusmatkailija Ernest Shackletonin kuuluisa Endurance-alus ei ollut rakenteellisesti riittävän kestävä ahtojäiden puristukseen. Shackleton myös tiesi aluksen puutteista ennen huonosti päättynyttä matkaansa Etelämantereelle.
The real reasons Endurance sank — study finds Shackleton knew of ship’s shortcomings6.10.2025 13:00:00 EEST | Press release
A world-first study reveals the famed polar explorer was aware of worrying structural shortcomings in the ill-fated ship — Endurance was not designed for compressive ice conditions — yet it set sail anyway.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme