Tutkijat kutistivat vettä valon avulla – erikoinen ilmiö mitattiin ensimmäistä kertaa maailmassa

Jaa

Kansainvälinen tutkijaryhmä osoitti, että atomit pakkautuvat valon vaikutuksesta lähemmäs toisiaan, mikä saa aineen pienenemään.

Taiteellinen näkemys laservalon etenemisestä ohuessa vesikerroksessa. Kuva: Mikko Partanen, Aalto-yliopisto.
Taiteellinen näkemys laservalon etenemisestä ohuessa vesikerroksessa. Kuva: Mikko Partanen, Aalto-yliopisto.

Kansainvälinen, brasilialaisen Estadual de Maringán yliopiston professori Nelson Astrathin koordinoima tutkijaryhmä on onnistunut ensimmäistä kertaa maailmassa mittaamaan, miten valon voima vaikuttaa aineen sisällä. Artikkeli julkaistiin Light: Science & Applications -lehdessä.

Tutkijat mittasivat laservalon voimia ohuessa vesikerroksessa valon kulkusuuntaan nähden poikittaisessa suunnassa ja havaitsivat optisen elektrostriktio-ilmiön. Se tarkoittaa, että materiaali pyrkii tiivistymään valon sähkökentässä. Ilmiö on sukua magnetostriktiolle, jossa ulkoisen, hitaasti muuttuvan magneettikentän avulla muutetaan metallikappaleen muotoa tai kokoa.

Ilmiöitä on tutkittu teoreettisesti varsin paljon, mutta valoon liittyen kokeita ei ole juurikaan tehty, ja myös teoria on ollut optiikassa osin puutteellinen, kertoo Aalto-yliopiston tutkija Mikko Partanen. Hän työskenteli tutkimuksen teoriaosuuden parissa ja vieraili myös Brasiliassa mittausten aikana.

”Atomit siis pakkautuvat elektrostriktiossa lähemmäs toisiaan ja aine tiivistyy. Ilmiö on vastakkainen säteilyn absorptiosta eli imeytymisestä tavallisesti huoneenlämmössä seuraavalle lämpölaajenemiselle. Tämän vuoksi aineen tiivistyminen on mitattavissa vain hyvin vähän säteilyä absorboivien aineiden tapauksessa”, kertoo Partanen.

Minimoidakseen absorptiota tutkijat kontrolloivat tarkkaan laservalon aallonpituutta. Välttääkseen veden lämpölaajenemisen tutkijaryhmä myös käytti kokeessa erittäin puhdasta vettä.

”Muussa tapauksessa laservalo lämmittäisi vettä hetkellisesti, saaden sen laajenemaan”, kertovat tutkijat Mauro Baesso ja Gabriel Flizikowski Estadual de Maringán yliopistosta.

Valon voimia aineen, kuten veden, sisällä ei ole ennen pystytty kokeellisesti mittaamaan, vaan aiemmat mittaukset ovat rajoittuneet voimiin eri aineiden rajapinnoilla.

Päästäkseen paremmin käsiksi aineen sisällä tapahtuvien ilmiöiden mittaamiseen pintailmiöiden sijasta tutkijat laittoivat vettä lasilevyjen väliin. Näin veden pinta ei pääse kaareutumaan lasersäteen vaikutuksesta. Kun laservalo sitten etenee lasilevyjen välissä olevan vesikerroksen läpi, valon etenemissuuntaan nähden poikittaissuuntainen optinen elektrostriktioilmiö voidaan havaita.

Laservalon energiatiheys on suurin säteen keskellä ja laskee nollaan siirryttäessä poispäin säteen akselilta. Optinen elektrostriktiovoima pyrkii siirtämään atomeja alueelle, jossa kentän energiatiheys on suurin. Tästä syystä neste tiivistyy lähellä säteen akselia. Nopean tiivistymisen seurauksena vedessä syntyy aineen tihentymistä ja harventumista muodostuva ääniaalto, joka etenee laserpulssin keskeltä säteittäisesti ulospäin.

Optinen kenttä avuksi nanoteknologian sovelluksissa

Tutkimus laajentaa Nobel-palkitun Arthur Ashkinin tutkimusta, jonka perusteella hän kehitti optiset pinsetit, joilla voidaan käsitellä pieniä materiaalihiukkasia valon avulla. Nyt tehty tutkimus auttaa ymmärtämään, miten optisen kentän energiatiheys muokkaa optisissa pinseteissä olevien materiaalihiukkasten sisäistä jännitystilaa.

”Jos optisella elektrostriktiolla opitaan kontrolloimaan aineen mekaanisia ominaisuuksia, sitä voitaisiin hyödyntää optisissa mikrosysteemeissä, esimerkiksi biologiassa tai lääketieteessä”, sanoo emeritusprofessori Jukka Tulkki.

Poikittaissuuntaisen ilmiön lisäksi aineen sisällä on myös etenemissuuntaisia optisia voimia, joita ei ole vielä saatu mitattua.

Linkki artikkeliin

Avainsanat

Yhteyshenkilöt

Mikko Partanen
Tutkijatohtori
Aalto-yliopisto
mikko.p.partanen@aalto.fi

Jukka Tulkki
Emeritusprofessori
Aalto-professori
jukka.tulkki@aalto.fi
puh. 050 501 4092

Kuvat

Taiteellinen näkemys laservalon etenemisestä ohuessa vesikerroksessa. Kuva: Mikko Partanen, Aalto-yliopisto.
Taiteellinen näkemys laservalon etenemisestä ohuessa vesikerroksessa. Kuva: Mikko Partanen, Aalto-yliopisto.
Lataa

Linkit

Tietoja julkaisijasta

Aalto-yliopisto
Aalto-yliopisto
PL 18000
00076 AALTO

09 47001, viestinta@aalto.fihttp://aalto.fi

Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu 12 000 opiskelijaa ja yli 4000 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.  

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Aalto-yliopisto

Miten vauhditetaan innovaatioita, saadaan ruoka riittämään ja tehdään kaupungeista vihreitä? Sustainability Science Days etsii vastauksia aikamme isoihin kestävyysongelmiin18.5.2022 08:30:00 EEST | Tiedote

Sustainability Science Days on Aalto-yliopiston ja Helsingin yliopiston vuosittain järjestämä, Suomen suurin kestävän kehityksen tiedekonferenssi. Kaksipäiväinen tapahtuma keskittyy tänä vuonna globaaleihin systeemitason ratkaisuihin esimerkiksi ruoan, kaupunkien ja hallinnon osalta.

Aalto-yliopisto perustajaosakkaaksi ekologista tekstiilikuitua kehittävään Ioncell-yhtiöön18.5.2022 07:33:57 EEST | Tiedote

Vastaperustetun yhtiön tavoitteena on kaupallistaa Ioncell®-teknologia, jonka avulla tekstiilijätteestä ja puusta voidaan valmistaa ekologisesti kestävällä tavalla korkealaatuista tekstiilikuitua. Ioncell Oy tavoittelee 10 vuoden aikana 5–10 prosentin osuutta kansainvälisestä yli 200 miljardin euron tekstiilikuitumarkkinasta, mikä toisi yhtiölle satojen miljoonien vuosittaiset lisensiointitulot.

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme