Tampereen yliopisto

Väitös: Tekoälyalgoritmit voivat helpottaa kroonisten sairauksien pitkän aikavälin hoitoa

Jaa

Väestön ikääntyessä ja ylipainon lisääntyessä kroonisten sairauksien odotetaan yleistyvän, ja siten terveydenhuollon kuormituksen kasvavan. Väitöstutkimuksessaan diplomi-insinööri Emmi Antikainen tutki terveysdataan pohjautuvia eri aikajänteillä toimivia sovelluksia, joiden avulla voidaan helpottaa sairauden etenemisen seurantaa, edistää parempia hoitotuloksia ja lieventää kasvavan tautitaakan kuormitusta terveydenhuollolle.

Hämeenkyröstä lähtöisin oleva diplomi-insinööri Emmi Antikainen suoritti väitöstutkimuksen työskennellessään Teknologian tutkimuskeskus VTT:llä. Nykyään hän työskentelee älysormusteknologioiden parissa Oura Health Oy:ssä.
Hämeenkyröstä lähtöisin oleva diplomi-insinööri Emmi Antikainen suoritti väitöstutkimuksen työskennellessään Teknologian tutkimuskeskus VTT:llä. Nykyään hän työskentelee älysormusteknologioiden parissa Oura Health Oy:ssä. Kuva: Petri Määttä

Krooniset sairaudet kuormittavat sekä potilaita että terveydenhuoltoa. Monet krooniset sairaudet heikentävät potilaan toimintakykyä sairauden edetessä ja vaativat säännöllisiä lääkärikäyntejä, joilla seurataan taudin kehittymistä. Potilas voi kärsiä muiden oireiden lisäksi muun muassa unihäiriöistä, uneliaisuudesta ja uupumuksesta, jotka heikentävät elämänlaatua. Monesti kroonisen sairauden etenemistä voidaan kuitenkin hidastaa ja oireita hoitaa, vaikka sairaus itsessään olisi parantumaton.

– Kroonisissa sairauksissa aika on avainasemassa. Eri pituisilla tarkastelujaksoilla on sairauden kannalta erilaisia merkityksiä, ja ne tarjoavat sairauden seurantaan erilaisia näkökulmia, Emmi Antikainen toteaa.

Entistä laadukkaampi ja paremmin saatavilla oleva mittausdata lisää mahdollisuuksia terveydenhuollon tukemiseen

Väitöstutkimuksessaan Antikainen tutki ja vertaili mallipohjaisia signaalinkäsittelyn sekä datapohjaisia koneoppimisen algoritmeja, joissa seurantajaksot vaihtelivat yhdestä yöstä puoleen vuoteen. Algoritmisovellukset on suunnattu kliinisen päätöksen teon tukeen. Antikainen arvioi algoritmien soveltuvuutta kliinisiin käyttötapauksiin todenmukaista käyttötilannetta vastaavissa mittauksissa.

Ensimmäisessä sovelluksessa hengityksen ja sykkeen muutoksia mitattiin tutkateknologialla, joka ei vaadi suoraa kontaktia mittauksen kohteeseen. Lähes reaaliaikainen elintoimintojen seuranta voi paljastaa nopeasti muutoksia esimerkiksi uniapneapotilaan tilassa. Unenaikaisten mittauksien lisäksi vastaava teknologia voisi sopia esimerkiksi vanhainkoteihin. Tutkimuksen mukaan perinteiset algoritmit täyttävät hyvin kliiniset vaatimukset, kun algoritmi perustuu korkean taajuuden mittauksiin.

Toisen sovelluksen tavoitteena oli löytää yhteyksiä kroonisiin sairauksiin liitettyjen subjektiivisten kokemusten, kuten uupumuksen ja uneliaisuuden, ja puettavista sensoreista arkielämässä saatavien biosignaalien välillä. Mittaamalla näitä kokemuksia objektiivisesti voitaisiin edistää kullekin yksilölle parhaiten sopivan hoitomuodon löytämistä sekä tutkia eri lääkkeiden ja hoitomuotojen vaikutuksia elämänlaatuun. Väitöstutkimuksessaan Antikainen havaitsi arkielämän ohessa tehdyt mittaukset arvokkaammiksi, kun mittauskonteksti tunnistettiin automaattisesti.

Kolmannessa sovelluksessa ennustettiin sydänsairaiden kuolleisuusriskiä tulevan puolen vuoden aikana sairaalan tietokannasta. Kuolleisuusriskin ennustaminen riittävän suurella aikaikkunalla voi antaa mahdollisuuden muutoksiin, jotka voivat pelastaa potilaan hengen tai auttaa erityisen riskialttiiden toimenpiteiden riskiarvioinnissa. Tässä tutkimuksessa sovellettiin samaa tekoälyteknologiaa, johon myös ChatGPT pohjautuu.

– Koska nykyteknologia mahdollistaa entistä suurempien datamäärien louhimisen ja tehokkaampaa analytiikkaa, myös pitkän aikavälin dataa on helpompi tutkia ja hyödyntää. Väitöstutkimuksessa tekoälyalgoritmien edut korostuivat juuri pitkän aikavälin kattavassa, mutta vaihtelevin aikavälein kerätyn potilasdatan tapauksessa. Samalla kuitenkin huomattiin, että yksi malli ei välttämättä sovellu laajalle potilaskirjolle, vaikka kyse olisikin saman fysiologisen toiminnon sairauksista, Antikainen kertoo.

Hämeenkyröstä lähtöisin oleva Antikainen suoritti väitöstutkimuksen työskennellessään Teknologian tutkimuskeskus VTT:llä. Nykyään hän työskentelee älysormusteknologioiden parissa Oura Health Oy:ssä.

Väitöstilaisuus perjantaina 15. maaliskuuta

Diplomi-insinööri Emmi Antikaisen signaalinkäsittelyn ja koneoppimisen alaan kuuluva väitöskirja Time series analytics for decision support in chronic diseases tarkastetaan julkisesti Tampereen yliopiston Informaatioteknologian ja viestinnän tiedekunnassa perjantaina 15. maaliskuuta 2024 kello 12 alkaen Tietotalon auditoriossa TB109 (osoite: Korkeakoulunkatu 1, Tampere). Vastaväittäjänä toimii professori Tapio Seppänen Oulun yliopistosta. Kustoksena toimii professori Moncef Gabbouj Tampereen yliopiston informaatioteknologian ja viestinnän tiedekunnasta.

Avainsanat

Yhteyshenkilöt

Emmi Antikainen
emmi.antikainen@gmail.com

Kuvat

Hämeenkyröstä lähtöisin oleva diplomi-insinööri Emmi Antikainen suoritti väitöstutkimuksen työskennellessään Teknologian tutkimuskeskus VTT:llä. Nykyään hän työskentelee älysormusteknologioiden parissa Oura Health Oy:ssä.
Hämeenkyröstä lähtöisin oleva diplomi-insinööri Emmi Antikainen suoritti väitöstutkimuksen työskennellessään Teknologian tutkimuskeskus VTT:llä. Nykyään hän työskentelee älysormusteknologioiden parissa Oura Health Oy:ssä.
Kuva: Petri Määttä
Lataa

Linkit

Tampereen yliopisto kytkee yhteen tekniikan, terveyden ja yhteiskunnan tutkimuksen ja koulutuksen. Teemme kumppaniemme kanssa yhteistyötä, joka perustuu vahvuusalueillemme sekä uudenlaisille tieteenalojen yhdistelmille ja niiden soveltamisosaamiselle. Luomme ratkaisuja ilmastonmuutokseen, luontoympäristön turvaamiseen sekä yhteiskuntien hyvinvoinnin ja kestävyyden rakentamiseen. Yliopistossa on 22 000 opiskelijaa ja henkilöstöä yli 4 000. Rakennamme yhdessä kestävää maailmaa.

Tilaa tiedotteet sähköpostiisi

Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.

Lue lisää julkaisijalta Tampereen yliopisto

Tutkijat seurasivat vuoden yläkoulun valmistavaa opetusta: Vasta maahan muuttaneiden kielitaito kehittyy odotusten mukaisesti, mutta tavoite on liian matala11.12.2025 08:30:00 EET | Tiedote

Tutkimus selvitti ensimmäistä kertaa laajasti valmistavaa opetusta suomalaisissa yläkouluissa. Vuoden seuranta paljastaa, että useimmat oppilaat saavuttavat vuoden aikana valmistavalle opetukselle asetetut tavoitteet: lähes yhdeksän kymmenestä ylitti luetun ymmärtämisen tavoitetason, kuullun ymmärtämisessä tavoitetason ylitti neljä viidestä. Kirjoittaminen kehittyi muita taitoja hitaammin. Tavoitetaso ei kuitenkaan välttämättä riitä yläkoulussa pärjäämiseen.

Perla teko -palkinto väkivaltaa koskevalle tutkimukselle, koulutukselle ja vaikuttamistyölle10.12.2025 13:09:13 EET | Tiedote

Lapsuuden, nuoruuden ja perheen tutkimuskeskus (Perla) myönsi vuosittaisen Perla teko -palkinnon vaikuttavasta työstä lapsuuden, nuoruuden ja perheen alueella. Vuonna 2025 palkinnon teemana oli ajankohtainen ilmiö tai teema. Palkinto myönnettiin Tampereen yliopiston sosiaalipolitiikan professori Marita Hussolle väkivaltaa koskevasta tutkimuksesta, koulutuksesta ja vaikuttamistyöstä.

Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.

Tutustu uutishuoneeseemme
World GlobeA line styled icon from Orion Icon Library.HiddenA line styled icon from Orion Icon Library.Eye