Fyysikko Mika A. Sillanpää sai jo kolmannen EU:n miljoonarahoituksen – uusi tutkimushanke sovittaa yhteen kvanttimekaniikkaa ja yleistä suhteellisuusteoriaa

Aalto-yliopiston professori Mika A. Sillanpää on saanut Euroopan tutkimusneuvostolta 2,5 miljoonan euron ERC Advanced Grant -rahoituksen GUANTUM-hankkeelle. Hankkeen tavoitteena on todeta painovoiman vaikutus kahden kultapallon kvanttimekaanisiin tiloihin ja värähtelyyn hyvin pienessä mittakaavassa ja äärimmäisen matalissa lämpötiloissa.
”Yritämme ratkaista tutkimuksella fysiikan sata vuotta vanhaa arvoitusta: sitä, että yleinen suhteellisuusteoria ja kvanttimekaniikka eivät tule toimeen keskenään”, Sillanpää sanoo.
Yleinen suhteellisuusteoria kuvaa maailmankaikkeutta, aika-avaruutta ja painovoimaa eli gravitaatiota. Kvanttimekaniikka taas on fysiikan osa-alue, joka tutkii atomien ja molekyylien kokoluokan hiukkasia. Kvanttimekaanisen järjestelmän sisäisiä gravitaatiovoimia ei ole koskaan havaittu, eivätkä tutkijat ole pystyneet luomaan molemmat kattavaa teoriaa. Tämän Sillanpää ryhmineen haluaa tutkimushankkeellaan muuttaa.
GUANTUM-hankkeessa tutkijat tuovat herkkinä värähtelijöinä toimivat, halkaisijaltaan puolen millimetrin kokoiset ja milligramman painoiset kultapallot kvanttimekaaniseen tilaan. Se on äärimmäisen suljettu järjestelmä, jossa ilmiöt voivat olla arkikäsityksen vastaisia. Samalla he havainnoivat erittäin heikkoa painovoimaa, joka saa kultapallot vetämään toisiaan puoleensa.
Kokeessa kumpikin kultapallo lepää hyvin ohuen kalvon päällä siten, että pallot ovat lähellä toisiaan ja pääsevät värähtelemään.
”Valitsimme kullan siksi, että se on erittäin tiheää eli sen gravitaatio on maksimoitu, vaikka kultapallon koko onkin suhteellisen pieni. Alustavan datan perusteella värähtelijän hyvyysluku oli uskomattoman hyvä eli kvanttimekaanisen järjestelmän energian häviö on pieni”, Sillanpää sanoo.
Kovaa puurtamista ja tähtihetkiä
Sillanpään tutkimusryhmä on valmis kokeilemaan kullan lisäksi muitakin alkuaineita. Esimerkiksi osmium on hyvin tiheä mutta harvinainen alkuaine, joka suprajohteena soveltuu sähköisten energiahäviöiden minimoimiseen, suprajohteessa kun ei ole sähköisiä häviöitä. Myös näytteen ohutkalvossa voi testata erilaisia materiaaleja ja sen antenneissa käyttää alumiinin sijasta muita suprajohteita, joissa on vielä pienemmät häviöt.
”Näytteen valmistus ja muukin osa tutkimuksesta on kovaa puurtamista. Vastaan voi tulla täysin yllättäviä ongelmia - sen näkee vasta sitten kun kokeilee”, Sillanpää kertoo.
Kvanttimekaanisten tilojen havaitseminen gravitaation rinnalla etenee tutkimuksessa askel askeleelta. Ensimmäisessä vaiheessa tutkijat etsivät itse gravitaatiovoiman milligramman massojen välillä. Läheskään näin pienten massojen välistä painovoimaa ei ole koskaan tutkimuksissa havaittu, eikä ole selvää, päteekö normaali painovoiman laki näin pienessä mittakaavassa.
Seuraavaksi Sillanpään ryhmä tavoittelee gravitaation havaitsemista tilanteessa, jossa kultapallojen sisäinen kvanttimekaaninen epämääräisyys hallitsee niiden värähtelyä. Viimeisessä vaiheessa he pyrkivät havaitsemaan näytteessä kaikkein kvanttimekaanisimman tilan eli lomittumisen gravitaation ohessa. Sillanpään on ryhmineen julkaissut lomittumisesta eli kvanttimekaniikan haamuvuorovaikutuksesta Nature-lehden artikkelin vuonna 2018.
”On mahtavaa päästä ratkaisemaan ihmiskunnan suurimpia ratkaisemattomia kysymyksiä, vaikka laboratoriossa tähtihetket ovatkin harvassa. Kokeessa voi esiintyä nykyfysiikalle tuntemattomia ilmiöitä, kun värähtelijät saadaan kvanttimekaaniseen tilaan ja samalla niiden välillä on merkittävä painovoiman vuorovaikutus. Lähes aina olemme kuitenkin loppujen lopuksi onnistuneet tavoitteessamme”, Sillanpää sanoo.
Hankkeessa hyödynnetään OtaNano-infrastruktuuria, ja osa ERC-rahoituksesta menee uuden kryostaatin eli jäähdytyslaitteen hankintaan. Sen valmistaa Aalto-taustainen, kvanttiteknologiaan erikoistunut kotimainen spinoff-yritys Bluefors, ja se soveltuu hyvin pienien värähtelyjen mittaamiseen.
”Tämäntyyppiset mittaukset ovat hyvin herkkiä matalataajuisille häiriöille, jotka häiritsevät etsimiämme ilmiöitä. Näytteet lähtevät hyvin helposti itsekseen värähtelemään esimerkiksi tärinän vaikutuksesta”, Sillanpää sanoo.
Kvanttimekaniikkaa hyödynnetään esimerkiksi äärimmäisen tarkkojen mittausten teknologisessa kehityksessä ja kvantti-informaatiossa.
Avainsanat
Yhteyshenkilöt
Mika A. Sillanpää
Professori
Aalto-yliopisto
mika.sillanpaa@aalto.fi
puh. 050 344 7330
Kuvat


Linkit
Tietoja julkaisijasta
Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa16.10.2025 12:00:00 EEST | Tiedote
Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa14.10.2025 08:10:00 EEST | Tiedote
Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Aalto-yliopiston tutkijat YK:n COP30-ilmastokokouksessa9.10.2025 10:45:00 EEST | Tiedote
Tarvitsetko asiantuntijahaastateltavaa ilmastoon liittyvistä teemoista? Aalto-yliopiston tutkijoiden ja professorien asiantuntemus on käytettävissä ennen YK:n ilmastokokousta ja sen aikana. Tutkijoitamme osallistuu myös kokoukseen Brasiliassa. Energiamurros Mika Järvinen (professori) taitaa energiamurroksen ison kuvan: minkä pitää muuttua ja miten. Hän keskittyy tutkimuksessaan hiilidioksidin talteenottoon, vedyn tuotantoon eri menetelmillä, sekä kestävien polttoaineiden valmistukseen. Opetuksessaan Järvinen keskittyy muun muassa uusiutuvan energian tuottamiseen tuuli- ja aurinkovoimalla. Järvinen on myös juuri julkaissut aiheesta laajan suosion saaneen oppikirjan, ja osaa esittää monimutkaiset asiat ymmärrettävästi. Järvinen on paikalla ilmastokokouksessa Brasiliassa 10.–16.11. Hänet tavoittaa numerosta +358 40 754 2171 ja sähköpostista mika.jarvinen@aalto.fi Rakentamisen tulevaisuus Matti Kuittinen (professori) tutkii kestävää rakentamista. Hänen johtamansa tutkimusryhmä tutkii sitä,
Endurance ei ollutkaan aikansa vahvin laiva ja sen puutteet olivat tiedossa – tutkimusmatkailija Shackletonin aluksen uppoamisesta paljastui uutta tietoa6.10.2025 13:00:00 EEST | Tiedote
Uusi tutkimus osoittaa, että tutkimusmatkailija Ernest Shackletonin kuuluisa Endurance-alus ei ollut rakenteellisesti riittävän kestävä ahtojäiden puristukseen. Shackleton myös tiesi aluksen puutteista ennen huonosti päättynyttä matkaansa Etelämantereelle.
The real reasons Endurance sank — study finds Shackleton knew of ship’s shortcomings6.10.2025 13:00:00 EEST | Press release
A world-first study reveals the famed polar explorer was aware of worrying structural shortcomings in the ill-fated ship — Endurance was not designed for compressive ice conditions — yet it set sail anyway.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme