Suurnopeuskamera paljastaa, mitä tapahtuu metallin venyessä ja murtuessa

Metalliseosten suunnittelussa ja valinnassa on tärkeää tietää, miten ne käyttäytyvät rasituksessa. Aalto-yliopiston ja Tampereen yliopiston tutkijat kuvasivat suurnopeuskameralla mitä tapahtuu, kun alumiiniseoksesta valmistettuja kappaleita venytetään aina murtumispisteeseen saakka. Tulokset julkaistiin juuri Science Advances -lehdessä.
Tutkimuksen tulokset voivat avata uusia uria materiaalitutkimukseen, ja niistä voi olla hyötyä esimerkiksi auto- tai ilmailuteollisuudessa käytettävien metalliseosten kehittämisessä. Erityisesti tiettyjen materiaalien, kuten autoissa ja lentokoneissa käytettävien kevyiden alumiiniseosten, muoto muuttuu rasituksessa arvaamattomasti.
”Kun autonkoreja prässätään alumiinista, tulee lopputuloksen kuitenkin olla tasainen”, sanoo tohtorikoulutettava Tero Mäkinen Aalto-yliopistosta.
Venymänauhat avuksi ennustamisessa
Kun materiaalia venytetään kevyesti, se joustaa. Kun venytys lopetetaan, materiaali palautuu alkuperäiseen muotoonsa. Jos venytystä jatketaan, kappaleessa tapahtuu pysyvä plastinen muodonmuutos eli se ei enää palaudu alkuperäiseen muotoonsa. Venytyksen jatkuessa ja materiaalin muuttaessa muotoaan se ennen pitkää murtuu.
Tutkimuksessa keskityttiin erityisesti plastisen muodonmuutoksen epävakausilmiöön, jota kutsutaan Portevin–Le Chatelier (PLC) -efektiksi. Näyte venyy epätasaisesti, ja nauhamaisia alueita, jotka venyvät enemmän kuin toiset, kutsutaan venymänauhoiksi.
”Tavoitteena oli ymmärtää, kuinka nauhat liikkuvat, sillä nauhojen liikkeen perusteella voimme ennustaa, miten materiaali muuttaa muotoaan. Olemassa olevat PLC-efektiä kuvaavat teoreettiset mallit eivät tekemiemme kokeiden perusteella olleet kovinkaan hyödyllisiä. Halusimme kuvata ja mitata ilmiötä aiempaa tarkemmin”, kertoo professori Mikko Alava Aalto-yliopistosta.
Yli tuhat kuvaa sekunnissa
Muodonmuutosta kuvaavia teoreettisia malleja ei ole voitu aikaisemmin vertailla keskenään, koska mittauksissa ei ole saatu tarpeeksi tarkkaa dataa materiaalissa tapahtuvista muutoksista. Nyt tutkijat kuvasivat näytteitä laservalon ja suurnopeuskameroiden avulla ja vertasivat kerättyä, mittavaa data-aineistoa erilaisiin teoreettisiin malleihin. He havaitsivat, että materiaalitieteen alalla vakiintunut magnetisaation muutosten kuvaamiseen käytetty malli kykeni hyvin tarkasti ennustamaan materiaalin käyttäytymistä ja nauhojen liikettä plastisen muodonmuutoksen aikana. Siitä, miten nopeasti nauhat etenivät ja miten paljon nopeus vaihteli, tutkijat pystyivät ennustamaan tarkasti, millaiseen muotoon materiaali muuttui.
”Suurnopeuskamera kuvaa näytettä suurella nopeudella, yli tuhat kuvaa sekunnissa, ja siksi sen avulla on mahdollista seurata venymänauhan liikettä. PLC-nauhojen liikkeitä on tutkittu aiemminkin erityisesti materiaalitieteen alueella, mutta pienimmätkin yksityiskohdat on saatava esiin, jotta voidaan havaita nauhojen käyttäytyvän magneettien lailla”, kertoo Tero Mäkinen.
”On yllättävää, että sama magnetisaation muutosten kuvaamiseen käytetty yksinkertainen tilastollinen malli soveltuu kahden näennäisesti hyvinkin erilaisen ilmiön kuvaamiseen. Sillä pystytään kuvaamaan tarkkaan myös muotoaan muuttavan materiaalin paikallista venymistä”, sanoo Tampereen yliopiston tenure track -professori Lasse Laurson.
Tutkimuksen avulla voidaan ennustaa tarkasti alumiiniseosten muodonmuutoksia, mutta soveltuuko se myös muihin metalliseoksiin?
”Metalleissa voi olla useita erityyppisiä PLC-nauhoja. Nyt kun olemme todentaneet mallimme soveltuvuuden yhdelle tyypille, haluamme selvittää, soveltuisiko se niihin kaikkiin”, Alava kertoo.
Lisätietoja:
Avainsanat
Yhteyshenkilöt
Mikko Alava
Professori
Aalto-yliopisto, Teknillisen fysiikan laitos
p. 050 413 2152
mikko.alava@aalto.fi
Lasse Laurson
Tenure track -professori
Tampereen yliopisto, Laskennallisen fysiikan laboratorio
p. 050 545 5387
lasse.laurson@tuni.fi
Kuvat

Linkit
Tietoja julkaisijasta
Aalto-yliopistossa tiede ja taide kohtaavat tekniikan ja talouden. Rakennamme kestävää tulevaisuutta saavuttamalla läpimurtoja avainalueillamme ja niiden yhtymäkohdissa. Samalla innostamme tulevaisuuden muutoksentekijöitä ja luomme ratkaisuja maailman suuriin haasteisiin. Yliopistoyhteisöömme kuuluu noin 13 000 opiskelijaa ja yli 4 500 työntekijää, joista 400 on professoreita. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa16.10.2025 12:00:00 EEST | Tiedote
Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa14.10.2025 08:10:00 EEST | Tiedote
Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Aalto-yliopiston tutkijat YK:n COP30-ilmastokokouksessa9.10.2025 10:45:00 EEST | Tiedote
Tarvitsetko asiantuntijahaastateltavaa ilmastoon liittyvistä teemoista? Aalto-yliopiston tutkijoiden ja professorien asiantuntemus on käytettävissä ennen YK:n ilmastokokousta ja sen aikana. Tutkijoitamme osallistuu myös kokoukseen Brasiliassa. Energiamurros Mika Järvinen (professori) taitaa energiamurroksen ison kuvan: minkä pitää muuttua ja miten. Hän keskittyy tutkimuksessaan hiilidioksidin talteenottoon, vedyn tuotantoon eri menetelmillä, sekä kestävien polttoaineiden valmistukseen. Opetuksessaan Järvinen keskittyy muun muassa uusiutuvan energian tuottamiseen tuuli- ja aurinkovoimalla. Järvinen on myös juuri julkaissut aiheesta laajan suosion saaneen oppikirjan, ja osaa esittää monimutkaiset asiat ymmärrettävästi. Järvinen on paikalla ilmastokokouksessa Brasiliassa 10.–16.11. Hänet tavoittaa numerosta +358 40 754 2171 ja sähköpostista mika.jarvinen@aalto.fi Rakentamisen tulevaisuus Matti Kuittinen (professori) tutkii kestävää rakentamista. Hänen johtamansa tutkimusryhmä tutkii sitä,
Endurance ei ollutkaan aikansa vahvin laiva ja sen puutteet olivat tiedossa – tutkimusmatkailija Shackletonin aluksen uppoamisesta paljastui uutta tietoa6.10.2025 13:00:00 EEST | Tiedote
Uusi tutkimus osoittaa, että tutkimusmatkailija Ernest Shackletonin kuuluisa Endurance-alus ei ollut rakenteellisesti riittävän kestävä ahtojäiden puristukseen. Shackleton myös tiesi aluksen puutteista ennen huonosti päättynyttä matkaansa Etelämantereelle.
The real reasons Endurance sank — study finds Shackleton knew of ship’s shortcomings6.10.2025 13:00:00 EEST | Press release
A world-first study reveals the famed polar explorer was aware of worrying structural shortcomings in the ill-fated ship — Endurance was not designed for compressive ice conditions — yet it set sail anyway.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme