Tutkijat loivat maailman nopeimman Bosen–Einsteinin kondensaatin
Huippunopeuden todentaminen oli vaikea tehtävä, koska parhaatkaan laboratorioissa normaalisti käytettävät kamerat eivät yllä näihin nopeuksiin. Tutkijat käyttivät nopeuden määrittämiseen laserpulssia.

Bosen-Einsteinin kondensaatio on kvantti-ilmiö, jossa suuri määrä hiukkasia alkaa käyttäytyä kuin ne olisivat yksi ainoa hiukkanen. Ilmiö sai nimensä Albert Einsteinilta ja Satyendra Nath Boselta, jotka ennustivat sen 1900-luvun alussa.
Tähän päivään mennessä kondensaatteja on nähty monissa eri systeemeissä, esimerkiksi alkaliatomikaasuissa ja puolijohteissa, joihin on kytketty valoa. Nyt Aalto-yliopiston ja Itä-Suomen yliopiston tutkijat ovat onnistuneet luomaan valosta ja sen kanssa vuorovaikuttavista metallielektroneista ja väriainemolekyyleistä kondensaatin, joka muodostuu kaikkia edeltäjiään nopeammin. Tulokset julkaistiin Nature Communications -lehdessä.
Arkielämässä kondensaatio on tuttu ilmiö esimerkiksi kylmään juomatölkkiin kertyvästä huurteesta, joka syntyy, kun vesihöyry tiivistyy tölkin kylmään pintaan. Samaan tapaan kvanttimaailmassa hiukkasten täytyy tavalla tai toisella päästä eroon ylimääräisestä energiastaan kondensoituakseen alimpaan mahdolliseen energiatilaan. Tämä prosessi kestää tyypillisesti millisekunneista noin yhteen pikosekuntiin eli sekunnin biljoonasosaan.
Suomalaistutkijat saivat kuitenkin kondensaatin muodostumaan kymmenen kertaa aiempia ennätyksiä nopeammin, noin sadassa femtosekunnissa. Se on yhteen sekuntiin verrattuna yhtä lyhyt aika kuin päivä verrattuna maailmankaikkeuden ikään.
”Mittausdatan analyysi osoitti, että energian häviäminen tapahtuu stimuloidun prosessin kautta. Toisin sanoen fotonien eli valohiukkasten vuorovaikutus molekyylien kanssa kiihtyy, kun fotonien määrä kasvaa. Tämä ilmiö johtaa hämmästyttävään nopeuteen”, kertoo tutkijatohtori Aaro Väkeväinen.
Kohti sovelluksia
Huippunopeuden todentaminen oli vaikea tehtävä, koska parhaatkaan laboratorioissa normaalisti käytettävät kamerat eivät yllä näihin nopeuksiin. Tutkijat käyttivät aikaskaalan määrittämiseen laserpulssia.
”Kun annoimme näytteelle energiaa 50 femtosekunnin mittaisella laserpulssilla, havaitsimme kondensaatin. Mutta kun pulssin pituus oli 300 femtosekuntia, emme nähneet sitä. Nämä havainnot viittasivat siihen, että kondensaatin täytyy lähteä muodostumaan alle 300 femtosekunnin aikaskaalassa”, kertoo tohtorikoulutettava Antti Moilanen.
Kondensaatista lähtee valonsäde, jossa on suuri määrä fotoneita. Tämä auttaa erottamaan myös korkean energiatilan fotonit ja havaitsemaan niiden jakautumisen eri energiatiloille Bosen ja Einsteinin ennustamalla tavalla.
”Kondensaattimme tuottaa koherentin valonsäteen, joka on 100 000 kertaa kirkkaampi kuin ensimmäinen plasmonikondensaatti, jonka havaitsimme kaksi vuotta sitten. Säteen kirkkaus helpottaa kondensaattiin liittyvää perustutkimusta ja sovellusten kehittämistä”, kertoo akatemiaprofessori Päivi Törmä.
Yhdelle ryhmän tutkimuksesta syntyneelle keksinnölle on juuri myönnetty patentti, ja tutkijat kehittävät keksintöä edelleen esimerkiksi valaistussovelluksiin.
Lisätietoa:
Quantum Dynamics tutkimusryhmä
PREIN – Suomen Akatemian fotoniikan tutkimuksen ja innovaatioiden lippulaiva
Avainsanat
Yhteyshenkilöt
Päivi Törmä, akatemiaprofessori, Aalto yliopisto
puh. 050 382 6770
paivi.torma@aalto.fi
Kuvat

Linkit
Tietoja julkaisijasta
Aalto-yliopisto. Kohti parempaa maailmaa. Aalto-yliopisto on rohkeiden ajattelijoiden yhteisö, jossa tiede ja taide kohtaavat tekniikan ja talouden. Tunnistamme ja ratkaisemme yhteiskunnan suuria haasteita ja rakennamme innovatiivista tulevaisuutta. Yliopistossa on kuusi korkeakoulua, 12 000 opiskelijaa ja 400 professoria. Kampuksemme sijaitsee Espoon Otaniemessä.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat mediatiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Aalto-yliopisto
Vettä hylkivä panssaripinnoite voi pian tehostaa aurinkopaneeleja ja tuoda suksiin lisäluistoa14.1.2021 08:47:21 EET | Tiedote
Kesäkuussa Aalto-yliopiston tutkijat kertoivat kehittämästään pinnoitteesta Nature-lehdessä. Nyt pinnoitteesta aletaan kehittää lukuisia kaupallisia sovelluksia muun muassa rakennus- ja elektroniikkateollisuuden kanssa.
Tutkijat kehittävät tietokonepeliä masennuksen hoitoon13.1.2021 08:24:17 EET | Tiedote
Terapeuttisen toimintavideopelin pelaaminen voi helpottaa masennuspotilaiden oireita ja parantaa heidän kognitiivista toimintakykyään.
Tutkijat kehittivät tuhkasta ja kompostista metsien täsmälannoitteen12.1.2021 08:54:33 EET | Tiedote
Putretiksi nimetty lannoite sisältää fosforia, kaliumia, hiiltä ja hitaasti vapautuvaa typpeä, jotka edistävät puiden kasvua. Sen valmistus kuluttaa selvästi vähemmän energiaa kuin keinolannoitteiden ja vähentää myös louhimisen tarvetta.
Askel kohti lähes rajatonta laskentatehoa – tutkijat loivat kvanttilomittumista lämmön avulla8.1.2021 15:01:49 EET | Tiedote
Helppo ja hallittava kvanttilomittuminen lisää kokonaislaskentakapasiteettia ja mahdollistaa muun muassa kvanttisalauksen eli turvallisen tiedonsiirron suurillakin etäisyyksillä
Miten motivoida ihmiset noudattamaan rajoituksia vapaaehtoisesti? – 13 ohjetta tehokkaaseen koronaviestintään22.12.2020 09:24:05 EET | Tiedote
Oikea viestintätyyli vaikuttaa ratkaisevasti siihen, kuinka hyvin ihmiset noudattavat suosituksia ja sääntöjä. Päättäjien ja asiantuntijoiden kannattaa kansalaisille suunnatussa koronaviestinnässään tukea ihmisten autonomiaa, kyvykkyyttä ja yhteisöllisyyttä, sanovat 13 ohjeen listan laatineet tutkijat.
Kohti nanokoneita – tutkijat onnistuivat hallitsemaan DNA-rakennetta valon avulla18.12.2020 08:18:32 EET | Tiedote
Valo sulkee ja avaa rakenteen ja säätelee myös liikkeen voimakkuutta. Menetelmän yksinkertaisuus on suuri etu sovelluksien kehittämisessä, esimerkiksi lääketieteessä.
Tutkijat löysivät uuden vaihtoehdon kubittien rakennusaineeksi – elektroneja huijaamalla16.12.2020 18:04:53 EET | Tiedote
Tutkijat loivat uuden materiaalin yhdistämällä hyvin ohuen kerroksen suprajohtavaa ja magneettista materiaalia.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme