Uusia tehokkaita nanokatalyyttejä auringonvalolla valmistetun vetyenergian tuottamiseksi
Vety on päästöiltään puhtain ihmisen käytössä oleva polttoaine. Jos vety vielä tuotetaan mahdollisimman puhtaasti, esimerkiksi suoraan auringon valolla, on se myös täysin uusiutuvaa. Käytännössä vety olisi näin täysin hiiletön vaihtoehto ja voisi syrjäyttää kestävämmällä vaihtoehdolla hiilipohjaisten energialähteiden käyttöä. Nykyään kaupallisesti tarjolla oleva vety tuotetaan käytännössä lähes kokonaan uusiutumattomasta maakaasusta reformoinnilla. Maakaasusta tuotettu vety tuo mukanaan ilmastoa muuttavia hiilidioksidipäästöjä (CO2).
Vedyn huikea potentiaali täysin puhtaana ja uusiutuvana energialähteenä on tunnistettu puoli vuosisataa sitten, jolloin tutkijat ovat alun perin ultraviolettivalolla onnistuneet fotokatalyyttisesti tuottamaan puhdasta vetyä. Suuressa mittakaavassa fotokatalyysin hyödyntäminen ei ole edennyt, koska fotokatalyysin hyötysuhde on vielä toistaiseksi ollut liian heikko.
Tutkijat ympäri maailmaa ovat kuitenkin kiihtyvään tahtiin tutkineet ja kehittäneet erilaisia synteettisiä fotokatalyyttimateriaaleja, joilla hyötysuhdetta saataisiin paremmaksi ja auringolla tuotettavan vedyn hinta kilpailukykyiseksi. Kiinnostus on nimenomaan kehittää näkyvällä valolla toimivia katalyyttejä, koska näin valon sisältämästä energiasta voitaisiin hyödyntää merkittävä osa.
NANOMOn tutkijoiden kehittämät katalyytit pohjautuvat nanomittakaavan heteroliitospuolijohde –komposiittirakenteisiin. Katalyytti kerää energiaa näkyvästä valosta, käyttää energian vesimolekyylien (H2O) hajottamiseen ja kahden vetyatomin vetymolekyylin muodostamiseen. Prosessissa vapautuu myös pieni määrä happea. Katalyytissä on perustana puolijohdemateriaali ja johtava metalli. Puolijohde kerää energiaa valosta ja hapettaa veden sekä siirtää elektroneja puolijohde-johde -liitosrajapinnan yli johteeseen, jossa vetyionipari (2H+) pelkistyy vetymolekyyliksi (H2). Katalyytin toiminnan kannalta on tärkeää, että kaikki vaiheet toimivat mahdollisimman hyvin.
Tutkituissa katalyyteissä fotokatalyyttisen vedyn tuottamisen haasteita ovat tehokas auringon valon eli valon sisältämien fotonien sieppaus puolijohteeseen, kyky muuntaa fotonin energia puolijohteen elektronin viritystilaksi, pitää viritystila päällä riittävän kauan (veden hapetusreaktion mahdollistamiseksi), siirtää viritystilan elektroni tehokkaasti edellä mainitun rajapinnan yli johteeseen ja pitää elektroni johteessa riittävän kauan (vetyionien pelkistämiseksi). Vesimolekyylien täytyy päästä hyvin kiinni puolijohteeseen hapettumista ja vastaavasti vetyionien täytyy hakeutua metallille pelkistymistä varten. Kyse on kvanttimekaanisten ja kemiallisten ilmiöiden optimoinnista, jossa tarvitaan atomitason fysiikan teoreettista ja kokeellista tutkimusta. Prosessissa täytyy säilyä myös tasapaino, eli hapettumista ja pelkistymistä pitää tapahtua oikeassa suhteessa.
Toistaiseksi lupaavimmat kolme NANOMOn komposiittia perustuvat MoS2-Ag-Ni, Bi2O2CO3/Bi2WO6 (jodiseostettu) ja TiO2-Ag-Ni -rakenteisiin. Kaikki kolme ovat osoittaneet hyviä fotokatalyyttisia ominaisuuksia vedyn tuottamisessa auringon valolla (näkyvällä). Kvanttihyötysuhde MoS2-Ag-Ni ja Bi2O2CO3/Bi2WO6 -yhdisteillä on ollut vastaavasti 7 % ja 14,9 %. Hyötysuhde lähestyy kaupallisia aurinkosähköpaneeleita. 1 gramma TiO2-Ag-Ni katalyyttiä on tuottanut kokeissa 86 mol vetyä tunnissa 1 watin valkoisen ledin valaistuksessa. NANOMOn tekemä tutkimus kattaa soveltavia kokeita, kokeita kehitystä fotokatalyysin skaalaukseen sekä valottaa katalyyttien toimintaa ja mekanismeja kvanttimekaniikan tasolla paitsi kokeellisesti niin myös teoreettisesti.
Viimeaikainen tutkimus osoittaa NANOMO-tutkimusyksikön roolia maailman kärkitasolla fotokatalyyttien kehittämisessä ja tutkimuksessa. Yksikkö tekee pioneerityötä, jossa käytetään fundamentaalisia uusia konsepteja toiminnallisten materiaalien tutkimukseen ja innovointiin. Fotokatalyyttien soveltavia pilottikokeita on tehty ja kehitetty projektissa, johon yksikkö on saanut rahoitusta Euroopan aluekehitysrahastosta.
Materiaaliratkaisuihin on jo myönnetty patentti Suomessa ja viimeisimmät tulokset on julkaistu huipputasolla Chemical Engineering Journal- ja RSC Advances -julkaisuissa.
Avainsanat
Yhteyshenkilöt
Associate Professor Wei Cao, Oulun yliopisto, NANOMO-tutkimusyksikkö, puh. 0400 897982, sähköposti: Wei.Cao@oulu.fi
Professori Marko Huttula, Oulun yliopisto, NANOMO-tutkimusyksikkö, puh. 0400 566 218, sähköposti: Marko.Huttula@oulu.fi
Viestintäasiantuntija Tiina Pistokoski, Oulun yliopisto, puh. 040 7161 387, sähköposti: Tiina.Pistokoski@oulu.fi
Tietoja julkaisijasta
Oulun yliopisto on monitieteinen, kansainvälisesti toimiva tiedeyliopisto. Tuotamme uutta tietoa ja ratkaisuja kestävämmän tulevaisuuden rakentamiseksi sekä koulutamme osaajia muuttuvaan maailmaan. Tärkeimmissä yliopistovertailuissa Oulun yliopisto sijoittuu kolmen prosentin kärkeen maailman yliopistojen joukossa. Meitä yliopistolaisia on noin 17 000.
Tilaa tiedotteet sähköpostiisi
Haluatko tietää asioista ensimmäisten joukossa? Kun tilaat tiedotteemme, saat ne sähköpostiisi välittömästi julkaisuhetkellä. Tilauksen voit halutessasi perua milloin tahansa.
Lue lisää julkaisijalta Oulun yliopisto
Oulun yliopiston opiskelijavalinta on valmistunut1.7.2025 05:51:00 EEST | Tiedote
Oulun yliopiston opiskelijavalinnan tulokset on julkaistu. Syksyllä 2025 yliopiston suomenkielisissä kandidaatti- ja maisteriohjelmissa aloittaa yli 2700 uutta opiskelijaa.
Kemiallinen vakoilija, ksenon, paljastaa esimerkiksi syöpäsolujen jälkiä – Oulussa kehitettiin uusia työkaluja NMR-signaalin tulkintaan30.6.2025 05:02:00 EEST | Tiedote
Ksenonatomi toimii kuin vakoilija, jonka NMR-signaalissa erottuvat ympäristön pienimmätkin muutokset. Oulun yliopiston NMR-tutkimusyksikössä on kehitetty laskennallisteoreettisia työkaluja, jotka avaavat uusia mahdollisuuksia käyttää ksenonkaasua biosensorina.
Susien pääkallot paljastavat susikannan vaihtuneen Fennoskandiassa25.6.2025 05:04:00 EEST | Tiedote
Oulun yliopiston tutkijoiden johtama uusi tutkimus on paljastanut silmiinpistäviä muutoksia Suomen, Norjan ja Ruotsin susien kallon muodossa, mikä heijastaa merkittävää susipopulaation vaihtumista 1900-luvulla.
Euroopan suurin magneettisen resonanssin konferenssi kokoaa lähes 700 tutkijaa Ouluun24.6.2025 07:03:00 EEST | Tiedote
Magneettista resonanssia eri aloilla kemiasta lääketieteeseen soveltavia kansainvälisiä asiantuntijoita kokoontuu Ouluun 6.–10.7.2025 EUROMAR-konferenssiin. Lähes 700 osallistujallaan se on yksi suurimmista Oulussa järjestetyistä kansainvälisistä tieteellisistä kokouksista.
Tutkijat kehittävät älykkäitä bioteknologisia ratkaisuja pohjoisista luonnonvaroista24.6.2025 05:50:00 EEST | Tiedote
Oulun yliopiston johtama uusi tutkimushanke WaVes – Smart Innovative Biotechnology from Arctic Plant-Derived Waxes and NanoBiomaterials keskittyy hyödyntämään arktisista kasveista, kuten pohjoisista marjoista ja kuusen neulasista, saatavia vaha- ja nanobiomateriaaleja korkeaa lisäarvoa tuottavien bioteknologisten sovellusten kehittämisessä. Tavoitteena on edistää kestävää biotaloutta ja luonnonvarojen vastuullista hyödyntämistä erityisesti pohjoisilla alueilla.
Uutishuoneessa voit lukea tiedotteitamme ja muuta julkaisemaamme materiaalia. Löydät sieltä niin yhteyshenkilöidemme tiedot kuin vapaasti julkaistavissa olevia kuvia ja videoita. Uutishuoneessa voit nähdä myös sosiaalisen median sisältöjä. Kaikki tiedotepalvelussa julkaistu materiaali on vapaasti median käytettävissä.
Tutustu uutishuoneeseemme